15 research outputs found

    Current View on Genetic Relationships within the Bunyamwera Serological Group

    No full text
    The Bunyamwera serological group includes a number of geographically widespread viruses that are related but not identical and have serological cross-reactivity. As the first group members were obtained in the pre-sequencing era, their classifications (group attribution, species differentiation) were originally based on serological reactions. At the same time, the accuracy of the typing in each case depended on the variety of viruses that the researcher had as a comparison panel. With the advent of sequencing techniques, it has become customary to use identity thresholds (nucleotide or amino acid composition) as demarcation criteria for the interspecific differentiation of viral species. Identity thresholds are determined by the International Committee on Taxonomy of Viruses (ICTV) and are regularly reviewed. Similar criteria were established for the Orthobunyavirus genus, which includes members of the Bunyamwera serological group. On the basis of these criteria, the species attributions of some members of the serological group need to be clarified. For this purpose, we analyzed sequences (available in NCBI GenBank) of viruses belonging to the Bunyamwera serological group in order to clarify their phylogenetic positions on the basis of the current demarcation criteria established by the ICTV

    COVID-19 Incidence Proportion as a Function of Regional Testing Strategy, Vaccination Coverage, and Vaccine Type

    No full text
    Introduction: The COVID-19 pandemic has become a serious challenge for humanity almost everywhere globally. Despite active vaccination around the world, the incidence proportion in different countries varies significantly as of May 2022. The reason may be a combination of demographic, immunological, and epidemiological factors. The purpose of this study was to analyze possible relationships between COVID-19 incidence proportion in the population and the types of SARS-CoV-2 vaccines used in different countries globally, taking into account demographic and epidemiological factors. Materials and methods: An initial database was created of demographic and immunoepidemiological information about the COVID-19 situation in 104 countries collected from published official sources and repository data. The baseline included, for each country, population size and density; SARS-CoV-2 testing coverage; vaccination coverage; incidence proportion; and a list of vaccines that were used, including their relative share among all vaccinations. Subsequently, the initial data set was stratified by population and vaccination coverage. The final data set was subjected to statistical processing both in general and taking into account population testing coverage. Results: After formation of the final data set (including 53 countries), it turned out that reported COVID-19 case numbers correlated most strongly with testing coverage and the proportions of vaccine types used, specifically, mRNA (V1); vector (V2); peptide/protein (V3); and whole-virion/inactivated (V4). Due to the fact that an inverse correlation was found between ‘reported COVID-19 case numbers’ with V2, V3, and V4, these three vaccine types were also combined into one analytic group, ‘non-mRNA group’ vaccines (Vnmg). When the relationship between vaccine type and incidence proportion was examined, minimum incidence proportion was noted at V1:Vnmg ratios (%:%) from 0:100 to 30:70. Maximum incidence proportion was seen with V1:Vnmg from 80:20 to 100:0. On the other hand, we have shown that the number of reported COVID-19 cases in different countries largely depends on testing coverage. To offset this factor, countries with low and extremely high levels of testing were excluded from the data set; it was then confirmed that the largest number of reported COVID-19 cases occurred in countries with a dominance of V1 vaccines. The fewest reported cases were seen in countries with a dominance of Vnmg vaccines. Conclusion: In this paper, we have shown for the first time that the level of reported COVID-19 incidence proportion depends not only on SARS-CoV-2 testing and vaccination coverage, which is quite logical, but probably also on the vaccine types used. With the same vaccination level and testing coverage, those countries that predominantly use vector and whole-virion vaccines feature incidence proportion that is significantly lower than countries that predominantly use mRNA vaccines

    Detection of Crimean–Congo Haemorrhagic Fever Virus from Livestock Ticks in Northern, Central and Southern Senegal in 2021

    No full text
    Crimean–Congo haemorrhagic fever virus (CCHFV) occurs sporadically in Senegal, with a few human cases each year. This active circulation of CCHFV motivated this study which investigated different localities of Senegal to determine the diversity of tick species, tick infestation rates in livestock and livestock infections with CCHFV. The samples were collected in July 2021 from cattle, sheep and goats in different locations in Senegal. Tick samples were identified and pooled by species and sex for CCHFV detection via RT-PCR. A total of 6135 ticks belonging to 11 species and 4 genera were collected. The genus Hyalomma was the most abundant (54%), followed by Amblyomma (36.54%), Rhipicephalus (8.67%) and Boophilus (0.75%). The prevalence of tick infestation was 92%, 55% and 13% in cattle, sheep and goats, respectively. Crimean–Congo haemorrhagic fever virus (CCHFV) was detected in 54/1956 of the tested pools. The infection rate was higher in ticks collected from sheep (0.42/1000 infected ticks) than those from cattle (0.13/1000), while all ticks collected from goats were negative. This study confirmed the active circulation of CCHFV in ticks in Senegal and highlights their role in the maintenance of CCHFV. It is imperative to take effective measures to control tick infestation in livestock to prevent future CCHFV infections in humans

    The Study of Viral RNA Diversity in Bird Samples Using De Novo Designed Multiplex Genus-Specific Primer Panels

    No full text
    Advances in the next generation sequencing (NGS) technologies have significantly increased our ability to detect new viral pathogens and systematically determine the spectrum of viruses prevalent in various biological samples. In addition, this approach has also helped in establishing the associations of viromes with many diseases. However, unlike the metagenomic studies using 16S rRNA for the detection of bacteria, it is impossible to create universal oligonucleotides to target all known and novel viruses, owing to their genomic diversity and variability. On the other hand, sequencing the entire genome is still expensive and has relatively low sensitivity for such applications. The existing approaches for the design of oligonucleotides for targeted enrichment are usually involved in the development of primers for the PCR-based detection of particular viral species or genera, but not for families or higher taxonomic orders. In this study, we have developed a computational pipeline for designing the oligonucleotides capable of covering a significant number of known viruses within various taxonomic orders, as well as their novel variants. We have subsequently designed a genus-specific oligonucleotide panel for targeted enrichment of viral nucleic acids in biological material and demonstrated the possibility of its application for virus detection in bird samples. We have tested our panel using a number of collected samples and have observed superior efficiency in the detection and identification of viral pathogens. Since a reliable, bioinformatics-based analytical method for the rapid identification of the sequences was crucial, an NGS-based data analysis module was developed in this study, and its functionality in the detection of novel viruses and analysis of virome diversity was demonstrated

    Whole Genome Sequencing Analysis of African Orthobunyavirus Isolates Reveals Naturally Interspecies Segments Recombinations between Bunyamwera and Ngari Viruses

    No full text
    Bunyamwera virus is the prototype of the Bunyamwera serogroup, which belongs to the order Bunyavirales of the Orthobunyavirus genus in the Peribunyaviridae family. Bunyamwera is a negative-sense RNA virus composed of three segments S, M, and L. Genetic recombination is possible between members of this order as it is already documented. Additionally, it can lead to pathogenic or host range improvement, if it occurs with viruses of public health and agricultural importance such as Rift Valley fever virus and Crimea–Congo hemorrhagic fever virus. Here, we characterize five African Orthobunyavirus viruses from different geographical regions. Our results suggest that the five newly characterized strains are identified as Bunyamwera virus strains. Furthermore, two of the five strains sequenced in this study are recombinant strains, as fragments of their segments are carried by Ngari and Bunyamwera strains. Further investigations are needed to understand the functional impact of these recombinations
    corecore