3 research outputs found

    Nonlinear dynamics of structures with propagating cracks

    Get PDF
    The aim of this paper is to study the evolution of nonlinear dynamics of structures with a propagating crack. A method of simulation used for analysis of dynamics of the cracked structure is based on a combination of an analytical technique and Matlab-Simulink-based simulations. As an example, a model of a cracked bar subjected to longitudinal excitation is used to analyse its nonlinear response as a way to monitor the structural health as crack propagates

    Application of smooth-particle hydrodynamics in metal machining

    Get PDF
    The finite element (FE) method has been extensively used to model complex cutting processes. However, due to large strains in a process zone, leading to increased element distortions, such simulations are confronted with numerical difficulties. Smooth-particle hydrodynamics (SPH) is a mesh-free computational method, which has been used to simulate multi-body problems. In this paper we present a 3D hybrid modelling approach for orthogonal micro-machining of a copper single crystal with the use of SPH and continuum FE. The model is implemented in a commercial FE software ABAQUS/Explicit. The study is used to gain insight into the effects of crystallographic anisotropy on the machining response of f.c.c. cubic metals
    corecore