2 research outputs found
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ΅ΠΏΠ»Π° ΠΊ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΠ΅ΡΠΈ
In the modern world, the efficient use of energy is an extremely important aspect of human activity. In particular, heat supply systems have significant economic, environmental and social importance for both heat consumers and heat supply organizations. The economic status of all participants in the heat supply process depends on the efficiency of the functioning of the heat supply systems. The reliability of the functioning of systems depends on vital processes such as the work of hospitals and industrial enterprises. With such a close network communication, reliable and efficient operation of power supply systems is critical. In this article, ways to improve the efficiency of heat supply systems are considered. A mathematical model for improved planning of heat supply systems by connecting the optimal set of new heat consumers is presented. For each single customer, when there is an alternative option for connecting this consumer to the existing heat network, it is possible to choose the only optimal solution. This becomes possible due to the restrictions and the procedure for selecting variants from a subset of binary variables corresponding to alternatives. The procedure for finding the optimal number of consumers for connection to the existing heat network is presented, which is the rationale for increasing the number of existing consumers of the heat network. The testing was carried out and the results of the mathematical model by an example of test heat networks are presented. Directions of further study of increasing the efficiency of heat supply systems and integrating the presented mathematical model with modern software complexes are determined.Π ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΌΠΈΡΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΎΠ½ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΡΠ°ΠΉΠ½Π΅ Π²Π°ΠΆΠ½ΡΠΌ Π°ΡΠΏΠ΅ΠΊΡΠΎΠΌ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ΅ΠΏΠ»ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅, ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Π΄Π»Ρ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ΅ΠΏΠ»Π°, ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ ΡΠ΅ΠΏΠ»ΠΎΡΠ½Π°Π±ΠΆΠ°ΡΡΠΈΡ
ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΉ. ΠΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ΡΠ΅ΠΏΠ»ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ Π·Π°Π²ΠΈΡΠΈΡ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π²ΡΠ΅Ρ
ΡΡΠ°ΡΡΠ½ΠΈΠΊΠΎΠ² ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠ΅ΠΏΠ»ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ. ΠΡ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ Π·Π°Π²ΠΈΡΡΡ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎ Π²Π°ΠΆΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠ°Π±ΠΎΡΠ° Π±ΠΎΠ»ΡΠ½ΠΈΡ ΠΈ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ
ΠΏΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΠΉ. ΠΡΠΈ ΡΠ°ΠΊΠΎΠΉ ΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΈ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈ Π²Π°ΠΆΠ½ΠΎ Π±Π΅Π·ΠΎΡΠΊΠ°Π·Π½ΠΎΠ΅ ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌ ΡΠ½Π΅ΡΠ³ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΡΡΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°Π±ΠΎΡΡ ΡΠΈΡΡΠ΅ΠΌ ΡΠ΅ΠΏΠ»ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΏΠ»Π°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π±ΠΎΡΡ ΡΠΈΡΡΠ΅ΠΌ ΡΠ΅ΠΏΠ»ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ ΠΏΡΡΠ΅ΠΌ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π½ΠΎΠ²ΡΡ
ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ΅ΠΏΠ»Π°. ΠΠ»Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ Π²Π·ΡΡΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π·, ΠΊΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΠΉ Π²Π°ΡΠΈΠ°Π½Ρ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ ΠΊ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΠ΅ΡΠΈ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ±ΡΠ°ΡΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΎ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π·Π° ΡΡΠ΅Ρ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ ΠΈ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ ΠΎΡΠ±ΠΎΡΠ° Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΠΈΠ· ΠΏΠΎΠ΄ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π±ΠΈΠ½Π°ΡΠ½ΡΡ
ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π°ΠΌ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° ΠΏΠΎΠΈΡΠΊΠ° ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ Π΄Π»Ρ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΊ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΠ΅ΡΠΈ, ΡΠ²Π»ΡΡΡΠ°ΡΡΡ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄Π»Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΈΡΠ»Π° ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ
ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°Π±ΠΎΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠ΅ΡΡΠΎΠ²ΡΡ
ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
ΡΠ΅ΡΠ΅ΠΉ, ΡΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΡΠ½ΠΎΠ³ΠΎ Π²Π²ΠΎΠ΄Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ°Π±ΠΎΡΡ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌ ΡΠ΅ΠΏΠ»ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΠΌΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°ΠΌΠΈ.Β Β Β Β Β
Model of the Connecting Optimal Number of Heat Consumers
In the modern world, the efficient use of energy is an extremely important aspect of human activity. In particular, heat supply systems have significant economic, environmental and social importance for both heat consumers and heat supply organizations. The economic status of all participants in the heat supply process depends on the efficiency of the functioning of the heat supply systems. The reliability of the functioning of systems depends on vital processes such as the work of hospitals and industrial enterprises. With such a close network communication, reliable and efficient operation of power supply systems is critical. In this article, ways to improve the efficiency of heat supply systems are considered. A mathematical model for improved planning of heat supply systems by connecting the optimal set of new heat consumers is presented. For each single customer, when there is an alternative option for connecting this consumer to the existing heat network, it is possible to choose the only optimal solution. This becomes possible due to the restrictions and the procedure for selecting variants from a subset of binary variables corresponding to alternatives. The procedure for finding the optimal number of consumers for connection to the existing heat network is presented, which is the rationale for increasing the number of existing consumers of the heat network. The testing was carried out and the results of the mathematical model by an example of test heat networks are presented. Directions of further study of increasing the efficiency of heat supply systems and integrating the presented mathematical model with modern software complexes are determined