37 research outputs found
Formation of Nanoclusters and Nanopillars in Nonequilibrium Surface Growth for Catalysis Applications: Growth by Diffusional Transport of Matter in Solution Synthesis
Growth of nanoclusters and nanopillars is considered in a model of surface
deposition of building blocks (atoms) diffusionally transported from solution
to the forming surface structure. Processes of surface restructuring are also
accounted for in the model, which then yields morphologies of interest in
catalysis applications. Kinetic Monte Carlo numerical approach is utilized to
explore the emergence of FCC-symmetry surface features in Pt-type metal
nanostructures. Available results exemplify evaluation of the fraction of the
resulting active sites with desirable properties for catalysis, such as
(111)-like coordination, as well as suggest optimal growth regimes
The District Heating in the Context of the Active Consumers Development in Smart Energy Systems
The paper defines the main factors of the smart energy systems that influence on the district heating. Noted increase in the regulatory impact of electric energy system on the district heating and increase in roles of the distribution and consumption of thermal energy. Urban population and other consumers of energy become equal partners of the utilities and acquire the status of "active" consumers. The heating supply companies need to develop a new model of management of heating regimes with dynamic synchronization with energy system and "active" consumers. One of the most important conditions of the achievement of the cost reduction, reliability and quality increase in community facilities is active consumer's behavior
Characterization of Complete Histone Tail Proteoforms Using Differential Ion Mobility Spectrometry
ACS AuthorChoice - This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.Histone proteins are subject to dynamic post-translational modifications (PTMs) that cooperatively modulate the chromatin structure and function. Nearly all functional PTMs are found on the N-terminal histone domains (tails) of similar to 50 residues protruding from the nucleosome core. Using high-definition differential ion mobility spectrometry (FAIMS) with electron transfer dissociation, we demonstrate rapid baseline gas-phase separation and identification of tails involving rnonomethylation, trimethylation, acetylation, or phosphorylation in biologically relevant positions. These are by far the largest variant peptides resolved by any method, some with PTM contributing just 0.25% to the mass. This opens the door to similar separations for intact proteins and in top-down proteomics.VILLUM Foundation to the VILLUM Center for Bioanalytical Sciences at University of Southern Denmark (O.N.J.), a Lundbeck Foundation Postdoctoral Fellowship (P.S.), and NIH COBRE (P30 GM110761) and NSF CAREER (CHE-1552640) grants (A.S.). A.S
Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen <i>Pectobacterium atrosepticum</i>
BACKGROUND: Small RNAs (sRNAs) have emerged as important regulatory molecules and have been studied in several bacteria. However, to date, there have been no whole-transcriptome studies on sRNAs in any of the Soft Rot Enterobacteriaceae (SRE) group of pathogens. Although the main ecological niches for these pathogens are plants, a significant part of their life cycle is undertaken outside their host within adverse soil environment. However, the mechanisms of SRE adaptation to this harsh nutrient-deficient environment are poorly understood. RESULTS: In the study reported herein, by using strand-specific RNA-seq analysis and in silico sRNA predictions, we describe the sRNA pool of Pectobacterium atrosepticum and reveal numerous sRNA candidates, including those that are induced during starvation-activated stress responses. Consequently, strand-specific RNA-seq enabled detection of 137 sRNAs and sRNA candidates under starvation conditions; 25 of these sRNAs were predicted for this bacterium in silico. Functional annotations were computationally assigned to 68 sRNAs. The expression of sRNAs in P. atrosepticum was compared under growth-promoting and starvation conditions: 68 sRNAs were differentially expressed with 47 sRNAs up-regulated under nutrient-deficient conditions. Conservation analysis using BLAST showed that most of the identified sRNAs are conserved within the SRE. Subsequently, we identified 9 novel sRNAs within the P. atrosepticum genome. CONCLUSIONS: Since many of the identified sRNAs are starvation-induced, the results of our study suggests that sRNAs play key roles in bacterial adaptive response. Finally, this work provides a basis for future experimental characterization and validation of sRNAs in plant pathogens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2376-0) contains supplementary material, which is available to authorized users
EXPERIENCE OF ORGANIZING TRAINING OF PROFESSIONALS FOR HIGH-TECH INDUSTRIES
The article describes some approaches to the organization of training of professionals for high-tech industries at the UNN Faculty of Physics using the resources of the Physical-Technical Research Institute of UNN. The paper presents a number of successful results of this activity. It is shown that the combination of fundamental training carried out at the classical Faculty of Physics and practical training at the Research Institute focused on the application of research results in the industry ensures a new level of quality for the competences of the University graduates
N-Terminal Tagging Strategy for De Novo Sequencing of Short Peptides by ESI-MS/MS and MALDI-MS/MS
The major portion of skin secretory peptidome of the European Tree frog Hyla arborea consists of short peptides from tryptophyllin family. It is known that b-ions of these peptides undergo head-to-tail cyclization, forming a ring that can open, resulting in several linear forms. As a result, the spectrum contains multiple ion series, thus complicating de novo sequencing. This was observed in the Q-TOF spectrum of one of the tryptophyllins isolated from Hyla arborea; the sequence FLPFFP-NH2 was established by Edman degradation and counter-synthesis. Though no rearrangements were observed in FTICR-MS and MALDI-TOF/TOF spectra, both of them were not suitable for mass-spectrometry sequencing due to the low sequence coverage. To obtain full amino acid sequence by mass spectrometry, three chemical modifications to N-terminal amino moiety were applied. They include acetylation and sulfobenzoylation of N-amino group and its transformation to 2,4,6-trimethylpyridinium by interaction with 2,4,6-trimethylpyrillium tetrafluoroborate. All three reagents block scrambling and provide spectra better than the intact peptide. Unfortunately, all of them also readily react with lysine side chain. Hence, all investigated procedures can be used to improve sequencing of short peptides, while acetylation is the recommended one. It shows excellent results, and it is plain and simple to perform. This is the procedure of choice for MS-sequencing of short peptides by manual or automatic algorithms
Brillouin-Scattering Induced Noise in DAS: A Case Study
In the paper, the effect of spontaneous Brillouin scattering (SpBS) is analyzed as a noise source in distributed acoustic sensors (DAS). The intensity of the SpBS wave fluctuates over time, and these fluctuations increase the noise power in DAS. Based on experimental data, the probability density function (PDF) of the spectrally selected SpBS Stokes wave intensity is negative exponential, which corresponds to the known theoretical conception. Based on this statement, an estimation of the average noise power induced by the SpBS wave is given. This noise power equals the square of the average power of the SpBS Stokes wave, which in turn is approximately 18 dB lower than the Rayleigh backscattering power. The noise composition in DAS is determined for two configurations, the first for the initial backscattering spectrum and the second for the spectrum in which the SpBS Stokes and anti-Stokes waves are rejected. It is established that in the analyzed particular case, the SpBS noise power is dominant and exceeds the powers of the thermal, shot, and phase noises in DAS. Accordingly, by rejecting the SpBS waves at the photodetector input, it is possible to reduce the noise power in DAS. In our case, this rejection is carried out by an asymmetric Mach-Zehnder interferometer (MZI). The rejection of the SpBS wave is most relevant for broadband photodetectors, which are associated with the use of short probing pulses to achieve short gauge lengths in DAS