2 research outputs found

    Effect of the C/N ratio modification on the corrosion behavior and performance of carbonitride coatings prepared by cathodic arc deposition

    Get PDF
    This study focuses on investigating carbonitride coatings, specifically CNTi-(Zr, ZrNb, and ZrSi), as promising candidates for enhancing the durability and efficiency of Ti6Al4V materials used in nuclear fusion technology. X-ray diffraction analysis identified distinct phases, including TiN, ZrN, ZrC, and TiC. The corrosion studies showed complete degradation of the TiN, ZrC, and ZrN phases in the TiZrCN coating after tests, while the TiC phase exhibited relative stability. The surface morphologies and elemental mapping analysis demonstrated the loss of homogeneity in element distribution after corrosion process. The addition of Si and Nb elements into TiZrCN significantly influenced the coatings' corrosion behavior, with breakaway corrosion observed in CNTi- (Zr and ZrSi) coatings and localized corrosion in CNTi-(ZrNb) coatings. Notably, the CNTi-(ZrSi) coating formed an oxide phase in the presence of NaCl, whereas the CNTi-(ZrNb) coating exhibited continuous resistance and a low corrosion rate. Irradiation was carried out for the generation of active isotopes, showing that no radioactive isotopes were formed in any of the investigated samples

    Effect of Si and Nb additions on carbonitride coatings under proton irradiation: A comprehensive analysis of structural, mechanical, corrosion, and neutron activation properties

    No full text
    In the present study, understoichiometric TiZrCN, TiZrNbCN, and TiZrSiCN coatings were produced using the cathodic arc technique with a C/N ratio of approximately 0.5 to investigate their potential use in nuclear technology. The coatings were evaluated for their corrosion resistance in 3.5 % NaCl and neutron activation. The effect of adding Si and Nb to the quaternary TiZrCN system was also investigated. The results showed that the addition of Si (∼4.64 at.%) to the matrix of TiZrCN improved their electrochemical properties in NaCl solution, the protective efficiency was 92%, while the Nb addition (∼5.5 at%) lead to the decrease in corrosion resistance by 1.39 times comparing with TiZrCN. Furthermore, after fast neutron irradiation at a nominal power of 1450 kW, none of the coatings were activated, indicating good radiation resistance. It was determined from the structural analysis that the Ti6Al4V substrate before corrosion consists of hexagonal and cubic space groups with different lattice parameters. By adding Si and Nb, a small amount of ZrO2 and Si3N4 was detected along with the main phases in the TiZrCN structure
    corecore