4 research outputs found

    A human minisatellite hosts an alternative transcription start site for NPRL3 driving its expression in a repeat number-dependent manner

    Get PDF
    Minisatellites, also called variable number of tandem repeats (VNTRs), are a class of repetitive elements that may affect gene expression at multiple levels and have been correlated to disease. Their identification and role as expression quantitative trait loci (eQTL) have been limited by their absence in comparative genomic hybridization and single nucleotide polymorphisms arrays. By taking advantage of cap analysis of gene expression (CAGE), we describe a new example of a minisatellite hosting a transcription start site (TSS) which expression is dependent on the repeat number. It is located in the third intron of the gene nitrogen permease regulator like protein 3 (NPRL3). NPRL3 is a component of the GAP activity toward rags 1 protein complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) activity and it is found mutated in familial focal cortical dysplasia and familial focal epilepsy. CAGE tags represent an alternative TSS identifying TAGNPRL3 messenger RNAs (mRNAs). TAGNPRL3 is expressed in red blood cells both at mRNA and protein levels, it interacts with its protein partner NPRL2 and its overexpression inhibits cell proliferation. This study provides an example of a minisatellite that is both a TSS and an eQTL as well as identifies a new VNTR that may modify mTORC1 activity

    Differential spatio-temporal expression of alpha-dystrobrevin-1 during mouse development.

    No full text
    Dystrobrevins are a family of dystrophin-related and dystrophin-associated proteins. alpha-dystrobrevin-1 knockout mice suffer from skeletal and cardiac myopathies. It has been suggested that the pathology is caused by the loss of signalling functions but the exact role of dystrobrevins is largely unknown. We have analysed the spatial and temporal expression of alpha-dystrobrevin-1 during mouse embryogenesis and found striking developmental regulation and distribution patterns. During development this protein was expressed not only in muscle but also in the CNS, sensory organs, epithelia and skeleton. Particularly interesting was the correlation of alpha-dystrobrevin-1 expression with the induction of various differentiation processes in the developing eye, inner ear, pituitary, blood-brain barrier, stomach epithelium and areas of the brain, dorsal root ganglia and spinal cord. In contrast, this specific expression at the induction phase decreased/disappeared at later stages of development

    Differential spatio-temporal expression of alpha-dystrobrevin-1 during mouse development

    No full text
    Dystrobrevins are a family of dystrophin-related and dystrophin-associated proteins. α-dystrobrevin-1 knockout mice suffer from skeletal and cardiac myopathies. It has been suggested that the pathology is caused by the loss of signalling functions but the exact role of dystrobrevins is largely unknown. We have analysed the spatial and temporal expression of α-dystrobrevin-1 during mouse embryogenesis and found striking developmental regulation and distribution patterns. During development this protein was expressed not only in muscle but also in the CNS, sensory organs, epithelia and skeleton. Particularly interesting was the correlation of α-dystrobrevin-1 expression with the induction of various differentiation processes in the developing eye, inner ear, pituitary, blood-brain barrier, stomach epithelium and areas of the brain, dorsal root ganglia and spinal cord. In contrast, this specific expression at the induction phase decreased/disappeared at later stages of development

    Abeta species removal after abeta42 immunization.

    No full text
    Neuropathologic examination of 3 patients with Alzheimer disease in the Elan Pharmaceuticals trial using antibodies specific for different Abeta species showed in one case, 4 months after the immunization, evidence of a stage of active plaque clearance with "moth-eaten" plaques and abundant Abeta phagocytosis by microglia. At 1 to 2 years after immunization, 2 cases showed extensive areas cleared of plaques (69% and 86% of the temporal cortex was plaque-free). Cortex cleared of plaques in all 3 cases had a characteristic constellation of features, including a very low plaque burden, sparse residual dense plaque cores, and phagocytosed Abeta within microglia. There was resolution of tau-containing dystrophic neurites, although other features of tau pathology (tangles and neuropil threads) remained and cerebral amyloid angiopathy persisted. Although most antibodies generated by Abeta42 immunization in humans bind the intact N-terminus, immunohistochemistry with specific antibodies showed clearance of all major species of Abeta (Abeta40, Abeta42, and N-terminus truncated Abeta). Abeta immunotherapy can clear all Abeta species from the cortex. However, if it is to be used for treatment of established Alzheimer disease, then the residual tau pathology and cerebral amyloid angiopathy require further study
    corecore