7 research outputs found

    GeoTriples: a Tool for Publishing Geospatial Data as RDF Graphs Using R2RML Mappings

    Get PDF
    In this paper we present the tool GeoTriples that allows the transformation of Earth Observation data and geospatial data into RDF graphs, by using and extending the R2RML mapping language to be able to deal with the specificities of geospatial data. GeoTriples is a semi-automated tool that transforms geospatial information into RDF following the state of the art vocabularies like GeoSPARQL and stSPARQL, but at the same time it is not tightly coupled to a specific vocabulary

    GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RML mappings

    Get PDF
    A lot of geospatial data has become available at no charge in many countries recently. Geospatial data that is currently made available by government agencies usually do not follow the linked data paradigm. In the few cases where government agencies do follow the linked data paradigm (e.g., Ordnance Survey in the United Kingdom), specialized scripts have been used for transforming geospatial data into RDF. In this paper we present the open source tool GeoTriples which generates and processes extended R2RML and RML mappings that transform geospatial data from many input formats into RDF. GeoTriples allows the transformation of geospatial data stored in raw files (shapefiles, CSV, KML, XML, GML and GeoJSON) and spatially-enabled RDBMS (PostGIS and MonetDB) into RDF graphs using well-known vocabularies like GeoSPARQL and stSPARQL, but without being tightly coupled to a specific vocabulary. GeoTriples has been developed in European projects LEO and Melodies and has been used to transform many geospatial data sources into linked data. We study the performance of GeoTriples experimentally using large publicly available geospatial datasets, and show that GeoTriples is very efficient and scalable especially when its mapping processor is implemented using Apache Hadoop

    Managing big, linked, and open earth-observation data: Using the TELEIOS/LEO software stack

    Get PDF
    Big Earth-observation (EO) data that are made freely available by space agencies come from various archives. Therefore, users trying to develop an application need to search within these archives, discover the needed data, and integrate them into their application. In this article, we argue that if EO data are published using the linked data paradigm, then the data discovery, data integration, and development of applications becomes easier. We present the life cycle of big, linked, and open EO data and show how to support their various stages using the software stack developed by the European Union (EU) research projects TELEIOS and the Linked Open EO Data for Precision Farming (LEO). We also show how this stack of tools can be used to implement an operational wildfire-monitoring service
    corecore