225 research outputs found

    Charge Photoinjection in Intercalated and Covalently Bound [Re(CO)_(3)(dppz)(py)]^(+)–DNA Constructs Monitored by Time-Resolved Visible and Infrared Spectroscopy

    Get PDF
    The complex [Re(CO)_(3)(dppz)(py′-OR)]+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine; py′-OR = 4-functionalized pyridine) offers IR sensitivity and can oxidize DNA directly from the excited state, making it a promising probe for the study of DNA-mediated charge transport (CT). The behavior of several covalent and noncovalent Re–DNA constructs was monitored by time-resolved IR (TRIR) and UV/visible spectroscopies, as well as biochemical methods, confirming the long-range oxidation of DNA by the excited complex. Optical excitation of the complex leads to population of MLCT and at least two distinct intraligand states. Experimental observations that are consistent with charge injection from these excited states include similarity between long-time TRIR spectra and the reduced state spectrum observed by spectroelectrochemistry, the appearance of a guanine radical signal in TRIR spectra, and the eventual formation of permanent guanine oxidation products. The majority of reactivity occurs on the ultrafast time scale, although processes dependent on slower conformational motions of DNA, such as the accumulation of oxidative damage at guanine, are also observed. The ability to measure events on such disparate time scales, its superior selectivity in comparison to other spectroscopic techniques, and the ability to simultaneously monitor carbonyl ligand and DNA IR absorption bands make TRIR a valuable tool for the study of CT in DNA

    Význam Ilkovičovy rovnice v elektrochemii

    Get PDF

    Tryptophan to Tryptophan Hole Hopping in an Azurin Construct.

    Get PDF
    Electron transfer (ET) between neutral and cationic tryptophan residues in the azurin construct [ReI(H126)(CO)3(dmp)](W124)(W122)CuI (dmp = 4,7-Me2-1,10-phenanthroline) was investigated by Born-Oppenheimer quantum-mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) simulations. We focused on W124•+ ← W122 ET, which is the middle step of the photochemical hole-hopping process *ReII(CO)3(dmp•-) ← W124 ← W122 ← CuI, where sequential hopping amounts to nearly 10,000-fold acceleration over single-step tunneling (ACS Cent. Sci. 2019, 5, 192-200). In accordance with experiments, UKS-DFT QM/MM/MD simulations identified forward and reverse steps of W124•+ ↔ W122 ET equilibrium, as well as back ET ReI(CO)3(dmp•-) → W124•+ that restores *ReII(CO)3(dmp•-). Strong electronic coupling between the two indoles (≥40 meV in the crossing region) makes the productive W124•+ ← W122 ET adiabatic. Energies of the two redox states are driven to degeneracy by fluctuations of the electrostatic potential at the two indoles, mainly caused by water solvation, with contributions from the protein dynamics in the W122 vicinity. ET probability depends on the orientation of Re(CO)3(dmp) relative to W124 and its rotation diminishes the hopping yield. Comparison with hole hopping in natural systems reveals structural and dynamics factors that are important for designing efficient hole-hopping processes

    Photoinduced hole hopping through tryptophans in proteins

    Get PDF
    Hole hopping through tryptophan/tyrosine chains enables rapid unidirectional charge transport over long distances. We have elucidated structural and dynamical factors controlling hopping speed and efficiency in two modified azurin constructs that include a rhenium(I) sensitizer, Re(His)(CO)3(dmp)+, and one or two tryptophans (W1, W2). Experimental kinetics investigations showed that the two closely spaced (3 to 4 Å) intervening tryptophans dramatically accelerated long-range electron transfer (ET) from CuI to the photoexcited sensitizer. In our theoretical work, we found that time-dependent density-functional theory (TDDFT) quantum mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) trajectories of low-lying triplet excited states of ReI(His)(CO)3(dmp)+–W1(–W2) exhibited crossings between sensitizer-localized (*Re) and charge-separated [ReI(His)(CO)3(dmp•–)/(W1•+ or W2•+)] (CS1 or CS2) states. Our analysis revealed that the distances, angles, and mutual orientations of ET-active cofactors fluctuate in a relatively narrow range in which the cofactors are strongly coupled, enabling adiabatic ET. Water-dominated electrostatic field fluctuations bring *Re and CS1 states to a crossing where *Re(CO)3(dmp)+←W1 ET occurs, and CS1 becomes the lowest triplet state. ET is promoted by solvation dynamics around *Re(CO)3(dmp)+(W1); and CS1 is stabilized by Re(dmp•–)/W1•+ electron/hole interaction and enhanced W1•+ solvation. The second hop, W1•+←W2, is facilitated by water fluctuations near the W1/W2 unit, taking place when the electrostatic potential at W2 drops well below that at W1•+. Insufficient solvation and reorganization around W2 make W1•+←W2 ET endergonic, shifting the equilibrium toward W1•+ and decreasing the charge-separation yield. We suggest that multiscale TDDFT/MM/MD is a suitable technique to model the simultaneous evolution of photogenerated excited-state manifolds

    Light-Induced Nanosecond Relaxation Dynamics of Rhenium-Labeled Pseudomonas aeruginosa Azurins.

    Get PDF
    Time-resolved phosphorescence spectra of Re(CO)3(dmp)+ and Re(CO)3(phen)+ chromophores (dmp = 4,7-dimethyl-1,10-phenanthroline, phen = 1,10-phenanthroline) bound to surface histidines (H83, H124, and H126) of Pseudomonas aeruginosa azurin mutants exhibit dynamic band maxima shifts to lower wavenumbers following 3-exponential kinetics with 1-5 and 20-100 ns major phases and a 1.1-2.5 μs minor (5-16%) phase. Observation of slow relaxation components was made possible by using an organometallic Re chromophore as a probe whose long phosphorescence lifetime extends the observation window up to ∼3 μs. Integrated emission-band areas also decay with 2- or 3-exponential kinetics; the faster decay phase(s) is relaxation-related, whereas the slowest one [360-680 ns (dmp); 90-140 ns (phen)] arises mainly from population decay. As a result of shifting bands, the emission intensity decay kinetics depend on the detection wavelength. Detailed kinetics analyses and comparisons with band-shift dynamics are needed to disentangle relaxation and population decay kinetics if they occur on comparable timescales. The dynamic phosphorescence Stokes shift in Re-azurins is caused by relaxation motions of the solvent, the protein, and solvated amino acid side chains at the Re binding site in response to chromophore electronic excitation. Comparing relaxation and decay kinetics of Re(dmp)124K122Cu II and Re(dmp)124W122Cu II suggests that electron transfer (ET) and relaxation motions in the W122 mutant are coupled. It follows that nanosecond and faster photo-induced ET steps in azurins (and likely other redox proteins) occur from unrelaxed systems; importantly, these reactions can be driven (or hindered) by structural and solvational dynamics

    Simple eigenvalue-self-consistent Δ ¯ G W 0 .

    Get PDF
    We show that a rigid scissors-like GW self-consistency approach, labeled here Δ ¯ G W 0 , can be trivially implemented at zero additional cost for large scale one-shot G 0 W 0 calculations. The method significantly improves one-shot G 0 W 0 and for large systems is very accurate. Δ ¯ G W 0 is similar in spirit to evGW 0 where the self-consistency is only applied on the eigenvalues entering Green's function, while both W and the eigenvectors of Green's function are held fixed. Δ ¯ G W 0 further assumes that the shift of the eigenvalues is rigid scissors-like so that all occupied states are shifted by the same amount and analogously for all the unoccupied states. We show that this results in a trivial modification of the time-dependent G 0 W 0 self-energy, enabling an a posteriori self-consistency cycle. The method is applicable for our recent stochastic-GW approach, thereby enabling self-consistent calculations for giant systems with thousands of electrons. The accuracy of Δ ¯ G W 0 increases with the system size. For molecules, it is up to 0.4-0.5 eV away from coupled-cluster single double triple (CCSD(T)), but for tetracene and hexacene, it matches the ionization energies from both CCSD(T) and evGW 0 to better than 0.05 eV. For solids, as exemplified here by periodic supercells of semiconductors and insulators with 6192 valence electrons, the method matches evGW 0 quite well and both methods are in good agreement with the experiment

    Synthesis, characterisation and photochemistry of PtIV pyridyl azido acetato complexes

    Get PDF
    PtII azido complexes [Pt(bpy)(N3)2] (1), [Pt(phen)(N3)2] (2) and trans-[Pt(N3)2(py)2] (3) incorporating the bidentate diimine ligands 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen) or the monodentate pyridine (py) respectively, have been synthesised from their chlorido precursors and characterised by X-ray crystallography; complex 3 shows significant deviation from square-planar geometry (N3–Pt–N3 angle 146.7°) as a result of steric congestion at the Pt centre. The novel PtIV complexes trans, cis-[Pt(bpy)(OAc)2(N3)2] (4), trans, cis-[Pt(phen)(OAc)2(N3)2] (5), trans, trans, trans-[Pt(OAc)2(N3)2(py)2] (6), were obtained from 1–3via oxidation with H2O2 in acetic acid followed by reaction of the intermediate with acetic anhydride. Complexes 4–6 exhibit interesting structural and photochemical properties that were studied by X-ray, NMR and UV-vis spectroscopy and TD-DFT (time-dependent density functional theory). These PtIV complexes exhibit greater absorption at longer wavelengths (ε = 9756 M−1 cm−1 at 315 nm for 4; ε = 796 M−1 cm−1 at 352 nm for 5; ε = 16900 M−1 cm−1 at 307 nm for 6, in aqueous solution) than previously reported PtIV azide complexes, due to the presence of aromatic amines, and 4–6 undergo photoactivation with both UVA (365 nm) and visible green light (514 nm). The UV-vis spectra of complexes 4–6 were calculated using TD-DFT; the nature of the transitions contributing to the UV-vis bands provide insight into the mechanism of production of the observed photoproducts. The UV-vis spectra of 1–3 were also simulated by computational methods and comparison between PtII and PtIV electronic and structural properties allowed further elucidation of the photochemistry of 4–6

    The Plastid Genome of Eutreptiella Provides a Window into the Process of Secondary Endosymbiosis of Plastid in Euglenids

    Get PDF
    Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content

    Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen

    Get PDF
    Red Queen host-parasite co-evolution can drive adaptations of immune-genes by positive selection that erodes genetic variation (Red Queen Arms Race), or result in a balanced polymorphism (Red Queen Dynamics) and the long-term preservation of genetic variation (trans-species polymorphism). These two Red Queen processes are opposite extremes of the co-evolutionary spectrum. Here we show that both Red Queen processes can operate simultaneously, analyzing the Major Histocompatibility Complex (MHC) in guppies (Poecilia reticulata and P. obscura), and swamp guppies (Micropoecilia picta). Sub-functionalization of MHC alleles into “supertypes” explains how polymorphisms persist during rapid host-parasite co-evolution. Simulations show the maintenance of supertypes as balanced polymorphisms, consistent with Red Queen Dynamics, whereas alleles within supertypes are subject to positive selection in a Red Queen Arms Race. Building on the Divergent Allele Advantage hypothesis, we show that functional aspects of allelic diversity help to elucidate the evolution of polymorphic genes involved in Red Queen co-evolution
    corecore