9 research outputs found
Alternative lengthening of telomeres, ATRX loss and H3â K27M mutations in histologically defined pilocytic astrocytoma with anaplasia
Anaplasia may be identified in a subset of tumors with a presumed pilocytic astrocytoma (PA) component or piloid features, which may be associated with aggressive behavior, but the biologic basis of this change remains unclear. Fiftyâ seven resections from 36 patients (23 M, 13 F, mean age 32 years, range 3â 75) were included. A clinical diagnosis of NF1 was present in 8 (22%). Alternative lengthening of telomeres (ALT) was assessed by telomereâ specific FISH and/or CISH. A combination of immunohistochemistry, DNA sequencing and FISH were used to study BRAF, ATRX, CDKN2A/p16, mutant IDH1 p.R132H and H3â K27M proteins. ALT was present in 25 (69%) cases and ATRX loss in 20 (57%), mostly in the expected association of ALT+/ATRXâ (20/24, 83%) or ALTâ /ATRX+ (11/11, 100%). BRAF duplication was present in 8 (of 26) (31%). H3â K27M was present in 5 of 32 (16%) cases, all with concurrent ATRX loss and ALT. ALT was also present in 9 (of 11) cases in the benign PA precursor, 7 of which also had ATRX loss in both the precursor and the anaplastic tumor. In a single pediatric case, ALT and ATRX loss developed in the anaplastic component only, and in another adult case, ALT was present in the PAâ A component only, but ATRX was not tested. Features associated with worse prognosis included subtotal resection, adult vs. pediatric, presence of a PA precursor preceding a diagnosis of anaplasia, necrosis, presence of ALT and ATRX expression loss. ALT and ATRX loss, as well as alterations involving the MAPK pathway, are frequent in PA with anaplasia at the time of development of anaplasia or in their precursors. Additionally, a small subset of PA with anaplasia have H3â K27M mutations. These findings further support the concept that PA with anaplasia is a neoplasm with heterogeneous genetic features and alterations typical of both PA and diffuse gliomas.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147190/1/bpa12646_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147190/2/bpa12646.pd
Neurosarcoidosis Masquerading as Giant Cell Arteritis With Incidental Meningioma
We present a case of vision loss secondary to neurosarcoidosis, which initially presented with severe bilateral vision loss, temporal headaches, and elevated erythrocyte sedimentation rate, concerning for giant cell arteritis. However, temporal artery biopsy was negative. Initial neuroimaging features were misinterpreted to represent a meningioma that did not account for his clinical presentation. Clinical course, including atypically rapid enlargement of presumed meningioma, development of skin lesions, appearance of optic nerve enhancement on MRI, and steroid response, strongly increased suspicion for sarcoidosis. Biopsy of a skin lesion demonstrated noncaseating granulomatous inflammation, consistent with sarcoidosis
Neurosarcoidosis Masquerading as Cavernous Sinus Meningioma
Neurosacroidosis can mimic intracranial tumors resulting in a diagnostic and therapeutic challenge 1-4. We present a case of right cavernous sinus and superior orbital fissure sarcoidosis masquerading as meningioma on MRI and associated with bilateral optic neuropathy that caused serious vision loss
Recommended from our members
Telomere alterations in neurofibromatosis type 1-associated solid tumors.
The presence of Alternative lengthening of telomeres (ALT) and/or ATRX loss, as well as the role of other telomere abnormalities, have not been formally studied across the spectrum of NF1-associated solid tumors. Utilizing a telomere-specific FISH assay, we classified tumors as either ALT-positive or having long (without ALT), short, or normal telomere lengths. A total of 426 tumors from 256 NF1 patients were evaluated, as well as 99 MPNST tumor samples that were sporadic or of unknown NF1 status. In the NF1-glioma dataset, ALT was present in the majority of high-grade gliomas: 14 (of 23; 60%) in contrast to only 9 (of 47; 19%) low-grade gliomas (p = 0.0009). In the subset of ALT-negative glioma cases, telomere lengths were estimated and we observed 17 (57%) cases with normal, 12 (40%) cases with abnormally long, and only 1 (3%) case with short telomeres. In the NF1-associated malignant nerve sheath tumor (NF1-MPNST) set (n = 75), ALT was present in 9 (12%). In the subset of ALT-negative NF1-MPNST cases, telomeres were short in 9 (38%), normal in 14 (58%) and long in 1 (3%). In the glioma set, overall survival was significantly decreased for patients with ALT-positive tumors (p < 0.0001). In the NF1-MPNST group, overall survival was superior for patients with tumors with short telomeres (p = 0.003). ALT occurs in a subset of NF1-associated solid tumors and is usually restricted to malignant subsets. In contrast, alterations in telomere lengths are more prevalent than ALT