39 research outputs found

    Propionic acid and not caproic acid, attenuates nonalcoholic steatohepatitis and improves (cerebro) vascular functions in obese Ldlr<sup>−/−</sup>.Leiden mice

    Get PDF
    The obesity epidemic increases the interest to elucidate impact of short-chain fatty acids on metabolism, obesity, and the brain. We investigated the effects of propionic acid (PA) and caproic acid (CA) on metabolic risk factors, liver and adipose tissue pathology, brain function, structure (by MRI), and gene expression, during obesity development in Ldlr−/−.Leiden mice. Ldlr−/−.Leiden mice received 16 weeks either a high-fat diet (HFD) to induce obesity, or chow as reference group. Next, obese HFD-fed mice were treated 12 weeks with (a) HFD + CA (CA), (b) HFD + PA (PA), or (c) a HFD-control group. PA reduced the body weight and systolic blood pressure, lowered fasting insulin levels, and reduced HFD-induced liver macrovesicular steatosis, hypertrophy, inflammation, and collagen content. PA increased the amount of glucose transporter type 1-positive cerebral blood vessels, reverted cerebral vasoreactivity, and HFD-induced effects in microstructural gray and white matter integrity of optic tract, and somatosensory and visual cortex. PA and CA also reverted HFD-induced effects in functional connectivity between visual and auditory cortex. However, PA mice were more anxious in open field, and showed reduced activity of synaptogenesis and glutamate regulators in hippocampus. Therefore, PA treatment should be used with caution even though positive metabolic, (cerebro) vascular, and brain structural and functional effects were observed.</p

    Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice

    Get PDF
    Mitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological domains linked to the pathobiology of depression, a novel mouse model was created. These mice harbor a gene trap in the first intron of the Ndufs4 gene (Ndufs4GT/GT mice), encoding the NDUFS4 protein, a structural component of complex I (CI), the first enzyme of the mitochondrial electron transport chain. We performed a comprehensive behavioral screening with a broad range of behavioral, physiological, and endocrine markers, high-resolution ex vivo brain imaging, brain immunohistochemistry, and multi-platform targeted mass spectrometry-based metabolomics. Ndufs4GT/GT mice presented with a 25% reduction of CI activity in the hippocampus, resulting in a relatively mild phenotype of reduced body weight, increased physical activity, decreased neurogenesis and neuroinflammation compared to WT littermates. Brain metabolite profiling revealed characteristic biosignatures discriminating Ndufs4GT/GT from WT mice. Specifically, we observed a reversed TCA cycle flux and rewiring of amino acid metabolism in the prefrontal cortex. Next, exposing mice to chronic variable stress (a model for depression-like behavior), we found that Ndufs4GT/GT mice showed altered stress response and coping strategies with a robust stress-associated reprogramming of amino acid metabolism. Our data suggest that impaired mitochondrial CI function is a candidate driver for altered stress reactivity and stress-induced brain metabolic reprogramming. These changes result in unique phenomic and metabolomic signatures distinguishing groups based on their mitochondrial genotype

    Convallatoxin: a new P-glycoprotein substrate

    No full text
    Digitalis-like compounds (DLCs), such as digoxin and digitoxin that are derived from digitalis species, are currently used to treat heart failure and atrial fibrillation, but have a narrow therapeutic index. Drug-drug interactions at the transporter level are frequent causes of DLCs toxicity. P-glycoprotein (P-gp, ABCB1) is the primary transporter of digoxin and its inhibitors influence pharmacokinetics and disposition of digoxin in the human body; however, the involvement of P-gp in the disposition of other DLCs is currently unknown. In present study, the transport of fourteen DLCs by human P-gp was studied using membrane vesicles originating from human embryonic kidney (HEK293) cells overexpressing P-gp. DLCs were quantified by liquid chromatography-mass spectrometry (LC-MS). The Lily of the Valley toxin, convallatoxin, was identified as a P-gp substrate (Km: 1.1±0.2 mM) in the vesicular assay. Transport of convallatoxin by P-gp was confirmed in rat in vivo, in which co-administration with the P-gp inhibitor elacridar, resulted in increased concentrations in brain and kidney cortex. To address the interaction of convallatoxin with P-gp on a molecular level, the effect of nine alanine mutations was compared with the substrate N-methyl quinidine (NMQ). Phe343 appeared to be more important for transport of NMQ than convallatoxin, while Val982 was particularly relevant for convallatoxin transport. We identified convallatoxin as a new P-gp substrate and recognized Val982 as an important amino acid involved in its transport. These results contribute to a better understanding of the interaction of DLCs with P-gp

    Hydroxytyrosol, the Major Phenolic Compound of Olive Oil, as an Acute Therapeutic Strategy after Ischemic Stroke

    No full text
    Contains fulltext : 215214.pdf (publisher's version ) (Open Access)Stroke is one of the leading causes of adult disability worldwide. After ischemic stroke, damaged tissue surrounding the irreversibly damaged core of the infarct, the penumbra, is still salvageable and is therefore a target for acute therapeutic strategies. The Mediterranean diet (MD) has been shown to lower stroke risk. MD is characterized by increased intake of extra-virgin olive oil, of which hydroxytyrosol (HT) is the foremost phenolic component. This study investigates the effect of an HT-enriched diet directly after stroke on regaining motor and cognitive functioning, MRI parameters, neuroinflammation, and neurogenesis. Stroke mice on an HT diet showed increased strength in the forepaws, as well as improved short-term recognition memory probably due to improvement in functional connectivity (FC). Moreover, mice on an HT diet showed increased cerebral blood flow (CBF) and also heightened expression of brain derived neurotrophic factor (Bdnf), indicating a novel neurogenic potential of HT. This result was additionally accompanied by an enhanced transcription of the postsynaptic marker postsynaptic density protein 95 (Psd-95) and by a decreased ionized calcium-binding adapter molecule 1 (IBA-1) level indicative of lower neuroinflammation. These results suggest that an HT-enriched diet could serve as a beneficial therapeutic approach to attenuate ischemic stroke-associated damage

    Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid : interaction with cyclosporine and tacrolimus

    No full text
    Mycophenolic acid (MPA) is an immunosuppressant used in transplant rejection, often in combination with cyclosporine (CsA) and tacrolimus (Tac). The drug is cleared predominantly via the kidneys, and 95% of the administered dose appears in urine as 7-hydroxy mycophenolic acid glucuronide (MPAG). The current study was designed to unravel the renal excretory pathway of MPA and MPAG, and their potential drug-drug interactions. The role of multidrug resistance protein (MRP) 2 and MRP4 in MPA disposition was studied using human embryonic kidney 293 (HEK293) cells overexpressing the human transporters, and in isolated, perfused kidneys of Mrp2-deficient rats and Mrp4-deficient mice. Using these models, we identified MPA as substrate of MRP2 and MRP4, whereas its MPAG appeared to be a substrate of MRP2 only. CsA inhibited MPAG transport via MRP2 for 50% at 8 μM (P < 0.05), whereas Tac had no effect. This was confirmed by cell survival assays, showing a 10-fold increase in MPA cytotoxicity (50% reduction in cell survival changed from 12.2 ± 0.3 μM to 1.33 ± 0.01 μM by MPA + CsA; P < 0.001) and in perfused kidneys, showing a 50% reduction in MPAG excretion (P < 0.05). The latter effect was observed in Mrp2-deficient animals as well, supporting the importance of Mrp2 in MPAG excretion. CsA, but not Tac, inhibited MPA glucuronidation by rat kidney homogenate and human uridine 5'-diphospho-glucuronosyltransferase-glucuronosyltransferase 1A9 (P < 0.05 and P < 0.01, respectively). We conclude that MPA is a substrate of both MRP2 and MRP4, but MRP2 is the main transporter involved in renal MPAG excretion. In conclusion, CsA, but not Tac, influences MPA clearance by inhibiting renal MPA glucuronidation and MRP2-mediated MPAG secretion

    The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites

    No full text
    Although there has been increasing interest in the use of high protein diets, little is known about dietary protein related changes in the mammalian metabolome.We investigated the influence of protein intake on selected tryptophan and phenolic compounds, derived from both endogenous and colonic microbial metabolism. Furthermore, potential inter-species metabolic differences were studied. For this purpose, 29 healthy subjects were allocated to a high (n = 14) or low protein diet (n = 15) for 2 weeks. In addition, 20 wild-type FVB mice were randomized to a high protein or control diet for 21 days. Plasma and urine samples were analyzed with liquid chromatography-mass spectrometry for measurement of tryptophan and phenolic metabolites. In human subjects, we observed significant changes in plasma level and urinary excretion of indoxyl sulfate (P 0.004 and P 0.001), and in urinary excretion of indoxyl glucuronide (P 0.01), kynurenic acid (P 0.006) and quinolinic acid (P 0.02). In mice, significant differences were noted in plasma tryptophan (P 0.03), indole-3- acetic acid (P 0.02), p-cresyl glucuronide (P 0.03), phenyl sulfate (P 0.004) and phenylacetic acid (P 0.01). Thus, dietary protein intake affects plasma levels and generation of various mammalian metabolites, suggesting an influence on both endogenous and colonic microbial metabolism. Metabolite changes are dissimilar between human subjects and mice, pointing to inter-species metabolic differences with respect to protein intake

    The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites

    Get PDF
    Although there has been increasing interest in the use of high protein diets, little is known about dietary protein related changes in the mammalian metabolome. We investigated the influence of protein intake on selected tryptophan and phenolic compounds, derived from both endogenous and colonic microbial metabolism. Furthermore, potential inter-species metabolic differences were studied. For this purpose, 29 healthy subjects were allocated to a high (n = 14) or low protein diet (n = 15) for 2 weeks. In addition, 20 wild-type FVB mice were randomized to a high protein or control diet for 21 days. Plasma and urine samples were analyzed with liquid chromatography-mass spectrometry for measurement of tryptophan and phenolic metabolites. In human subjects, we observed significant changes in plasma level and urinary excretion of indoxyl sulfate (P 0.004 and P 0.001), and in urinary excretion of indoxyl glucuronide (P 0.01), kynurenic acid (P 0.006) and quinolinic acid (P 0.02). In mice, significant differences were noted in plasma tryptophan (P 0.03), indole-3-acetic acid (P 0.02), p-cresyl glucuronide (P 0.03), phenyl sulfate (P 0.004) and phenylacetic acid (P 0.01). Thus, dietary protein intake affects plasma levels and generation of various mammalian metabolites, suggesting an influence on both endogenous and colonic microbial metabolism. Metabolite changes are dissimilar between human subjects and mice, pointing to inter-species metabolic differences with respect to protein intake.status: publishe

    The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites

    Get PDF
    Although there has been increasing interest in the use of high protein diets, little is known about dietary protein related changes in the mammalian metabolome. We investigated the influence of protein intake on selected tryptophan and phenolic compounds, derived from both endogenous and colonic microbial metabolism. Furthermore, potential inter-species metabolic differences were studied. For this purpose, 29 healthy subjects were allocated to a high (n = 14) or low protein diet (n = 15) for 2 weeks. In addition, 20 wild-type FVB mice were randomized to a high protein or control diet for 21 days. Plasma and urine samples were analyzed with liquid chromatography-mass spectrometry for measurement of tryptophan and phenolic metabolites. In human subjects, we observed significant changes in plasma level and urinary excretion of indoxyl sulfate (P 0.004 and P 0.001), and in urinary excretion of indoxyl glucuronide (P 0.01), kynurenic acid (P 0.006) and quinolinic acid (P 0.02). In mice, significant differences were noted in plasma tryptophan (P 0.03), indole-3-acetic acid (P 0.02), p-cresyl glucuronide (P 0.03), phenyl sulfate (P 0.004) and phenylacetic acid (P 0.01). Thus, dietary protein intake affects plasma levels and generation of various mammalian metabolites, suggesting an influence on both endogenous and colonic microbial metabolism. Metabolite changes are dissimilar between human subjects and mice, pointing to inter-species metabolic differences with respect to protein intake

    Human Alpha-1-Antitrypsin (hAAT) therapy reduces renal dysfunction and acute tubular necrosis in a murine model of bilateral kidney ischemia-reperfusion injury

    No full text
    Several lines of evidence have demonstrated the anti-inflammatory and cytoprotective effects of alpha-1-antitrypsin (AAT), the major serum serine protease inhibitor. The aim of the present study was to investigate the effects of human AAT (hAAT) monotherapy during the early and recovery phase of ischemia-induced acute kidney injury. Mild renal ischemia-reperfusion (I/R) injury was induced in male C57Bl/6 mice by bilateral clamping of the renal artery and vein for 20 min. hAAT (80 mg/kg, Prolastin®) was administered daily intraperitoneally (i.p.) from day -1 until day 7 after surgery. Control animals received the same amount of human serum albumin (hAlb). Plasma, urine and kidneys were collected at 2h, 1, 2, 3, 8 and 15 days after reperfusion for histological and biochemical analysis. hAAT partially preserved renal function and tubular integrity after induction of bilateral kidney I/R injury, which was accompanied with reduced renal influx of macrophages and a significant decrease of neutrophil gelatinase-associated lipocalin (NGAL) protein levels in urine and plasma. During the recovery phase, hAAT significantly decreased kidney injury molecule-1 (KIM-1) protein levels in urine but showed no significant effect on renal fibrosis. Although the observed effect size of hAAT administration was limited and therefore the clinical relevance of our findings should be evaluated carefully, these data support the potential of this natural protein to ameliorate ischemic and inflammatory conditions
    corecore