28 research outputs found
A new calcium releasing nano-composite biomaterial for bone tissue engineering scaffolds
A biomaterial with bioactive glass nanoparticles (nBG) and Ca2+ incorporated into alginate matrix was developed. Films characterization was carried out by SEM, IR, tensile strength measurements, bioactivity assay, degradation and swelling studies. Ca2+ release from films was analyzed. Freeze-dried-scaffolds were also fabricated. Films showed the development of a homogeneous matrix and the mechanical properties were improved when nBG were incorporated. The bioactive nature of nBG containing films was confirmed by studies in simulated body fluid. Degradation was negligible and a good swelling capacity was observed. Moreover Ca2+ was released in a controlled manner. In scaffolds fabricated by freeze-drying, pores were seen to be uniform and well distributed. According to the characterization results, these composite biomaterials are attractive candidates for the fabrication of bone tissue engineering scaffolds.Fil: Cattalini, Juan Pablo. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Garcia, J,. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Boccaccini, A. R.. Universitat Erlangen-Nuremberg; Alemania;Fil: Lucangioli, Silvia Edith. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Mouriño, Viviana Silvia Lourdes. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin
Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering
The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration.Fil: Erol, M. M.. İstanbul Teknik Üniversitesi; TurquíaFil: Mouriño, Viviana Silvia Lourdes. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; ArgentinaFil: Newby, P.. Imperial College London; Reino UnidoFil: Chatzistavrou, X.. Universitat Erlangen-Nuremberg; AlemaniaFil: Roether, Judith A.. Universitat Erlangen-Nuremberg; AlemaniaFil: Hupa, L.. Abo Akademi University; FinlandiaFil: Boccaccini, Aldo R.. Imperial College London; Reino Unido. Universitat Erlangen-Nuremberg; Alemani
Novel nanocomposite biomaterials with controlled copper/calcium release capability for bone tissue engineering multifunctional scaffolds
This work aimed to develop novel composite biomaterials for bone tissue engineering (BTE) made of bioactive glass nanoparticles (Nbg) and alginate cross-linked with Cu2+ or Ca2+ (AlgNbgCu, AlgNbgCa, respectively). Twodimensional scaffolds were prepared and the nanocomposite biomaterials were characterized in terms of morphology, mechanical strength, bioactivity, biodegradability, swelling capacity, release profile of the cross-linking cations and angiogenic properties. It was found that both Cu2+ and Ca2+ are released in a controlled and sustained manner with no burst release observed. Finally, in vitro results indicated that the bioactive ions released from both nanocomposite biomaterials were able to stimulate the differentiation of rat bone marrow-derived mesenchymal stem cells towards the osteogenic lineage. In addition, the typical endothelial cell property of forming tubes in Matrigel was observed for human umbilical vein endothelial cells when in contact with the novel biomaterials, particularly AlgNbgCu, which indicates their angiogenic properties. Hence, novel nanocomposite biomaterials made of Nbg and alginate cross-linked with Cu2+ or Ca2+ were developed with potential applications for preparation of multifunctional scaffolds for BTE.Fil: Cattalini, Juan Pablo. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; ArgentinaFil: Hoppe, A.. Universitat Erlangen-Nuremberg; AlemaniaFil: Pishbin, F.. Imperial College London; Reino UnidoFil: Roether, Judith A.. Universitat Erlangen-Nuremberg; AlemaniaFil: Boccaccini, Aldo R.. Universitat Erlangen-Nuremberg; AlemaniaFil: Lucangioli, Silvia Edith. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mouriño, Viviana Silvia Lourdes. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Influence of herbal extracts in physicochemical properties and stability of antibacterial gels
The use of plants to treat diseases and heal wounds is a custom that dates back thousands of years and is a legacy of ancient civilizations. Although a significant proportion of the planet's plant biodiversity is found on theAmerican continent, there are very few pharmaceutical products developed from it. This work aimed to develop and characterize topical formulations (gels and emulgels), including a combination of plant extracts with recognized antibacterial activity. Hydroalcoholic extracts of Lippia turbinata Griseb. and Lippia alba (Mill.) N. E. Brown were obtained by leaching. The excipients used were Carbopol® 934 and 940, Sepigel® 305, sodium carboxymethylcellulose, methylcellulose, propylene glycol, and ethanol. The finished product was characterized by properties: organoleptic characteristics, extensibility, pH, texture profile, permeation performance, and microbiological quality. Then, they were subjected to stability studies in different conditions of temperature and humidity. They had a characteristic smell of plant species, color brown, without the presence of lumps, and with good extensibility. The gels had an in vitro permeation of porcine skin of up to 30% and low retention in the epithelium (<15%). They did not present microbial contamination and were stable for six months. Of the gels formulated, the gel with Sepigel® 4% (w/w) presented a better appearance. These results demonstrate the feasibility of transporting non-hydro soluble extracts in a gel formulation. All formulations are appropriate to preserve the antibacterial effect of original extracts. They maintain stability over time without the use of antimicrobial preservatives.Fil: Pérez Zamora, Cristina Marisel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Chaco Austral. Departamento de Ciencias Básicas y Aplicadas; ArgentinaFil: Michaluk, Ariel Germán. Universidad Nacional del Chaco Austral; ArgentinaFil: Torres, Carola Analía. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Nordeste. Instituto de Investigaciones En Procesos Tecnologicos Avanzados. - Universidad Nacional del Chaco Austral. Instituto de Investigaciones En Procesos Tecnologicos Avanzados.; ArgentinaFil: Mouriño, Viviana Silvia Lourdes. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chiappetta, Diego Andrés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nuñez, María Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Nordeste. Instituto de Investigaciones En Procesos Tecnologicos Avanzados. - Universidad Nacional del Chaco Austral. Instituto de Investigaciones En Procesos Tecnologicos Avanzados.; Argentina. Universidad Nacional del Chaco Austral. Departamento de Ciencias Básicas y Aplicadas; Argentin
Solubility and stability studies of benzoyl peroxide in non-polar, non-comedogenic solvents for use in topical pharmaceutical formulation developments
Non-irritant, non-comedogenic and non-polar emollients were pre-selected for determinations of relative dielectric permittivity and solubility of benzoyl peroxide (BP). Those solvents capable of solubilizing BP in concentrations commonly utilised in topical formulations (between 1 and 10 %) were taken into account for stability studies. The developed pre-formulations were also studied for acute irritation both clinically and instrumentally. Even though the solubility of BP in the solvents studied had relatively low values; in some cases, such as with caprylic/capric triglyceride (CapCap) and dicaprylyl carbonate (DicCar) it has been possible to obtain acceptable concentrations of BP from a therapeutic viewpoint (19.9 and 19.5 mg/mL, respectively). Two BP pre-formulations (PBCapCap and PBDicCar) with enhanced stability and with the capability to decrease adverse application site reaction by maintaining moisture in the stratum corneum were developed with potential application in topical formulations of BP with solvents of low relative dielectric permittivity (CapCap and DicCar, respectively).Colegio de Farmacéuticos de la Provincia de Buenos Aire
Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments
This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted
EL PROTECTOR SOLAR Y EL CUIDADO DE LA PIEL EN EL VERANO
La mayoría de las personas espera con interés el verano y la consecuente oportunidad de poder pasar algún tiempo al sol. El sol es imprescindible para la vida y posee efectos positivos en pequeñas dosis —quince minutos diarios— para mejorar el estado de ánimo, la circulación, incrementar el metabolismo y producir vitamina D, que es favorable para los huesos, la musculatura y el sistema inmunitario del organismo. Sin embargo, la luz solar también puede ser nociva y, su sobreexposición, conducir a efectos perjudiciales en el corto (generalmente reversibles) y el largo plazo. A corto plazo, la exposición a los rayos UV puede causar alergia solar —que la piel se enrojezca y se originen manchas rojas acompañadas de picazón en la zona del pecho, los hombros, los brazos y las piernas—, quemaduras de distinta gravedad, transtornos de la pigmentación, acné, fotosensibilidad y fotoinmunosupresión
Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond
Bioactive glasses (BG) are being widely used for bone tissue engineering applications due to their bioactivity (ability to form strong bonds to bone) and their stimulating effects on bone formation. Recently, progress has been made to enhance the biological impact of BGs by incorporating specific metallic ions in silicate (or phosphate) glasses, including boron, copper, cobalt, silver, zinc and strontium. This review summarizes the newest developments on novel compositions of bioactive glasses in the field of bone tissue engineering related to osteogenesis and angiogenesis. Furthermore, new applications areas for bioactive glasses, including nerve regeneration and cancer treatment, are highlighted.Fil: Hoppe, Alexander. Universitat Erlangen-Nuremberg; AlemaniaFil: Mouriño, Viviana Silvia Lourdes. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Boccaccini, Aldo R.. Universitat Erlangen-Nuremberg; Alemani
Development and validation of a novel sensitive UV-direct capillary electrophoresis method for quantification of alendronate in release studies from biomaterials
A simple, highly sensitive, and robust CE method applied to the determination of alendronate (ALN) was developed from matrices for tissue engineering, characterized by being highly complex systems. The novel method was based on the ALN derivatization with o-phthalaldehyde and 2-mercaptoethanol for direct ultraviolet detection at 254 nm. The BGE consisted of 20 mM sodium borate buffer at pH 10, and the electrophoretic parameters were optimized.The method was validated in terms of specificity, linearity, LOD, LOQ, precision, accuracy, and robustness. The LOD and LOQ obtained were 0.8 and 2.7 μg/mL, respectively. In addition, the method offers higher sensitivity and specificity compared to other CE and HPLC methods using UV-detectors, as well as low cost and simplicity that allowed the rapid and simple quantitation of ALN from bone regeneration matrices.Fil: Cattalini, Juan Pablo. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; ArgentinaFil: Mouriño, Viviana Silvia Lourdes. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Lucangioli, Silvia Edith. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin