3 research outputs found

    Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries: From Synthetic to Biopolymers

    No full text
    The diversification of current forms of energy storage and the reduction of fossil fuel consumption are issues of high importance for reducing environmental pollution. Zinc and magnesium are multivalent ions suitable for the development of environmentally friendly rechargeable batteries. Nanocomposite polymer electrolytes (NCPEs) are currently being researched as part of electrochemical devices because of the advantages of dispersed fillers. This article aims to review and compile the trends of different types of the latest NCPEs. It briefly summarizes the desirable properties the electrolytes should possess to be considered for later uses. The first section is devoted to NCPEs composed of poly(vinylidene Fluoride-co-Hexafluoropropylene). The second section centers its attention on discussing the electrolytes composed of poly(ethylene oxide). The third section reviews the studies of NCPEs based on different synthetic polymers. The fourth section discusses the results of electrolytes based on biopolymers. The addition of nanofillers improves both the mechanical performance and the ionic conductivity; key points to be explored in the production of batteries. These results set an essential path for upcoming studies in the field. These attempts need to be further developed to get practical applications for industry in large-scale polymer-based electrolyte batteries

    Chitosan-Carboxymethylcellulose Hydrogels as Electrolytes for Zinc–Air Batteries: An Approach to the Transition towards Renewable Energy Storage Devices

    No full text
    Biopolymers are promising materials as electrolytes with high flexibility, good performance, cost effectiveness, high compatibility with solvents, and film-forming ability. Chitosan (CS) and carboxymethylcellulose (CMC) can form an intermolecular complex, giving rise to hydrogels capable of absorbing ionic solutions. Citric acid (CA) is an effective biological chemical crosslinker that assists the formation of amide and ester bonds between CMC and CS, resulting in a structure with high ionic conductivity and good structural integrity. In this study, a chemical crosslinking strategy is used to synthesize electrolyte hydrogels for zinc–air batteries. The effects of crosslinking are studied on the structural and electrochemical performance of the membranes. The results show an improvement in the ionic conductivity with respect to the homologous electrolyte hydrogel systems reported, with a maximum of 0.19 S∙cm−1 at 30 °C. In addition, the cyclic voltammetry studies showed a current intensity increase at higher CA content, reaching values of 360 mA∙cm−2. Structural characterization suggests a higher thermal stability and a decrease in the degree of crystallinity caused by the polymers’ crosslinking. Finally, these membranes were tested in Zn–air batteries, obtaining power densities of 85 mW∙cm−2. The proposed hydrogels show to be appropriate for energy zinc–air battery applications and present an alternative to support the sustainable energy transition

    Contribuci贸n al mecanismo de formaci贸n de poros de sticholisina I, una prote铆na formadora de poros de la an茅mona Stichodactyla helianthus, mediante el empleo de mutantes de Cys en zonas funcionalmente relevantes de la prote铆na

    No full text
    Sticholisina I (St I) es una citolisina producida por la an茅mona marina Stichodactyla helianthus, que se caracteriza por formar poros oligom茅ricos en membranas naturales y artificiales. En este trabajo se describe la obtenci贸n por v铆a recombinante en Escherichia coli (E. coli) de una variante recombinante de St I (St Ir), as铆 como su caracterizaci贸n conformacional y funcional. Estos trabajos permitieron reducir el impacto ecol贸gico que provoca la obtenci贸n de St I a partir de las an茅monas como fuente natural y adem谩s realizar mutag茅nesis sitio-espec铆fica para su caracterizaci贸n funcional. La ausencia de Cys en St I facilit贸 la introducci贸n de este residuo aminoac铆dico, por mutag茅nesis dirigida, en zonas funcionalmente importantes de la toxina. En el trabajo se sustituyeron por Cys en St Ir de forma independiente, los amino谩cidos Glu2 y Phe15 (localizados en el segmento de los primeros treinta amino谩cidos que participan en la formaci贸n del canal) y la Arg52, Pro80 y Trp111 (en la regi贸n de interacci贸n con las membranas). As铆, se obtuvieron y purificaron de E. coli cinco prote铆nas mutadas: StI E2C, StI F15C, StI R52C, StI P80C y StI W111C. Los estudios de caracterizaci贸n espectrosc贸picos permitieron establecer que las sustituciones aminoac铆dicas no provocaron cambios conformacionales en los mutantes con respecto a St Ir. Los mon贸meros de StI E2C, StI R52C y StI P80C mostraron capacidades similares de uni贸n a las membranas en comparaci贸n con la variante recombinante. StI F15C mostr贸 un ligero incremento en su capacidad de interacci贸n con las membranas mientras que StI W111C result贸 la de menor capacidad de uni贸n. La capacidad formadora de poros de los mon贸meros, medida en ves铆culas liposomales y membrana eritrocitaria, result贸 similar entre StI E2C, StI F15C y St Ir. Sin embargo, la actividad l铆tica de StI R52C, StI P80C y StI W111C disminuy贸 con respecto a St Ir. Los agregados dim茅ricos por enlace disulfuro en StI R52C y StI W111C disminuyeron la actividad biol贸gica de las prote铆nas. Una de las novedades cient铆ficas m谩s importante del presente trabajo radica en que se demuestra que la presencia de agregados dim茅ricos estabilizados por enlace disulfuro, en StI E2C, incrementa la actividad biol贸gica formadora de poros tanto en ves铆culas liposomales como en eritrocitos. Estos resultados demuestran, por primera vez, que la uni贸n covalente de los extremos aminos de St I potencia la formaci贸n de poros funcionales por un mecanismo hasta ahora desconocido. En la investigaci贸n se aportan nuevos elementos sobre la importancia de los residuos Glu2, Phe15, Arg52, Pro80 y Trp111 en las etapas de uni贸n inicial a las membranas y de formaci贸n de poros durante el mecanismo l铆tico. Por 煤ltimo, la obtenci贸n de los mutantes de Cys abre las posibilidades para el marcaje de St I con sondas de esp铆n o sondas fluorescentes para estudiar el mecanismo de formaci贸n de poros mediante las espectroscopias de resonancia paramagn茅tica electr贸nica (EPR) y de fluorescencia, y sustentan otras aplicaciones nanobiotecnol贸gicas actualmente en desarrollo en nuestro grupo de trabajo.Sticholisin I (St I) is a cytolysin produced by the sea anemone Stichodactyla helianthus, which is characterized by forming oligomeric pores in natural and artificial membranes. This work describes the recombinant production in Escherichia coli (E. coli) of a recombinant variant of St I (St Ir), as well as its conformational and functional characterization. These works allowed us to reduce the ecological impact caused by obtaining St I from anemones as a natural source and also perform site-specific mutagenesis for its functional characterization. The absence of Cys in St I facilitated the introduction of this amino acid residue, by directed mutagenesis, into functionally important areas of the toxin. In the work, the amino acids Glu2 and Phe15 (located in the segment of the first thirty amino acids that participate in the formation of the channel) and Arg52, Pro80 and Trp111 (in the interaction region) were independently replaced by Cys in St Ir. with the membranes). Thus, five mutated proteins were obtained and purified from E. coli: StI E2C, StI F15C, StI R52C, StI P80C and StI W111C. Spectroscopic characterization studies allowed us to establish that amino acid substitutions did not cause conformational changes in the mutants with respect to St Ir. The monomers of StI E2C, StI R52C and StI P80C showed similar binding capacities to membranes compared to the recombinant variant. StI F15C showed a slight increase in its interaction capacity with membranes while StI W111C had the lowest binding capacity. The pore-forming capacity of the monomers, measured in liposomal vesicles and erythrocyte membrane, was similar between StI E2C, StI F15C and St Ir. However, the lytic activity of StI R52C, StI P80C and StI W111C decreased with respect to St Ir The dimeric aggregates by disulfide bond in StI R52C and StI W111C decreased the biological activity of the proteins. One of the most important scientific novelties of the present work is that it is demonstrated that the presence of dimeric aggregates stabilized by disulfide bond, in StI E2C, increases the pore-forming biological activity in both liposomal vesicles and erythrocytes. These results demonstrate, for the first time, that covalent attachment of the amino termini of St I enhances the formation of functional pores by a previously unknown mechanism. The research provides new elements on the importance of residues Glu2, Phe15, Arg52, Pro80 and Trp111 in the stages of initial binding to membranes and pore formation during the lytic mechanism. Finally, obtaining the Cys mutants opens the possibilities for labeling St I with spin probes or fluorescent probes to study the mechanism of pore formation through electron paramagnetic resonance (EPR) and fluorescence spectroscopies, and support other nanobiotechnological applications currently under development in our working group.Universidad Nacional, Costa RicaAcademia de Ciencias de Cuba, CubaEscuela de Ciencias Biol贸gica
    corecore