17 research outputs found

    Identification of the Amino Acid Subsets Accounting for the Ligand Binding Specificity of a Glutamate Receptor

    Get PDF
    AbstractIn a situation so far unique among neurotransmitter receptors, glutamate receptors share amino acid sequence similarities with the bacterial periplasmic binding proteins (PBPs). On the basis of the primary structure similarity of two bacterial periplasmic proteins (lysine/arginine/ornithine- and phosphate-binding proteins) with the chick cerebellar kainate-binding protein (KBP), a member of the ionotropic glutamate receptor family, we have generated a three-dimensional model structure of the KBP extracellular domain. By an interplay between homology modeling and site-directed mutagenesis, we have investigated the kainate binding properties of 55 different mutants (corresponding to 43 positions) and studied the interactions of some of these mutants with various glutamatergic ligands. As a result, we present here the subsets of amino acids accounting for the binding free energies and specificities of KBP for kainate, glutamate, and CNQX and propose a three-dimensional model, at the microarchitectural level, of the glutamatergic binding domain

    Autoimmune Epilepsy: Some Epilepsy Patients Harbor Autoantibodies to Glutamate Receptors and dsDNA on both Sides of the Blood-brain Barrier, which may Kill Neurons and Decrease in Brain Fluids after Hemispherotomy

    Get PDF
    Purpose: Elucidating the potential contribution of specific autoantibodies (Ab's) to the etiology and/or pathology of some human epilepsies. Methods: Six epilepsy patients with Rasmussen's encephalitis (RE) and 71 patients with other epilepsies were tested for Ab's to the –B— peptide (amino acids 372-395) of the glutamate/AMPA subtype 3 receptor (GluR3B peptide), double-stranded DNA (dsDNA), and additional autoimmune disease-associated autoantigens, and for the ability of their serum and cerebrospinal-fluid (CSF) to kill neurons. Results: Elevated anti-GluR3B Ab's were found in serum and CSF of most RE patients, and in serum of 17/71 (24%) patients with other epilepsies. In two RE patients, anti-GluR3B Ab's decreased drastically in CSF following functional-hemispherotomy, in association with seizure cessation and neurological improvement. Serum and CSF of two RE patients, and serum of 12/71 (17%) patients with other epilepsies, contained elevated anti-dsDNA Ab's, the hallmark of systemic-lupus-erythematosus. The sera (but not the CSF) of some RE patients contained also clinically elevated levels of –classical— autoimmune Ab's to glutamic-acid-decarboxylase, cardiolipin, ÎČ2-glycoprotein-I and nuclear-antigens SS-A and RNP-70. Sera and CSF of some RE patients caused substantial death of hippocampal neurons. Conclusions: Some epilepsy patients harbor Ab's to GluR3 and dsDNA on both sides of the blood-brain barrier, and additional autoimmune Ab's only in serum. Since all these Ab's may be detrimental to the nervous system and/or peripheral organs, we recommend testing for their presence in epilepsy, and silencing their activity in Ab-positive patients

    GOT to rid the body of excess glutamate

    No full text
    corecore