8 research outputs found

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Bovine lactoferrin and lactoferrin-derived peptides inhibit the growth of Vibrio cholerae and other Vibrio species

    Get PDF
    Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species

    Modulation of immune responses by targeting CD169/Siglec-1 with the glycan ligand

    No full text
    A fundamental role in the plant-bacterium interaction for Gram-negative phytopathogenic bacteria is played by membrane constituents, such as proteins, lipopoly- or lipooligosaccharides (LPS, LOS) and Capsule Polysaccharides (CPS). In the frame of the understanding the molecular basis of plant bacterium interaction, the Gram-negative bacterium Agrobacterium vitis was selected in this study. It is a phytopathogenic member of the Rhizobiaceae family and it induces the crown gall disease selectively on grapevines (Vitis vinifera). A. vitis wild type strain F2/5, and its mutant in the quorum sensing gene ΔaviR, were studied. The wild type produces biosurfactants; it is considered a model to study surface motility, and it causes necrosis on grapevine roots and HR (Hypersensitive Response) on tobacco. Conversely, the mutant does not show any surface motility and does not produce any surfactant material; additionally, it induces neither necrosis on grape, nor HR on tobacco. Therefore, the two strains were analyzed to shed some light on the QS regulation of LOS structure and the consequent variation, if any, on HR response. LOS from both strains were isolated and characterized: the two LOS structures maintained several common features and differed for few others. With regards to the common patterns, firstly: the Lipid A region was not phosphorylated at C4 of the non reducing glucosamine but glycosylated by an uronic acid (GalA) unit, secondly: a third Kdo and the rare Dha (3-deoxy-lyxo-2-heptulosaric acid) moiety was present. Importantly, the third Kdo and the Dha residues were substituted by rhamnose in a not stoichiometric fashion, giving four different oligosaccharide species. The proportions among these four species, is the key difference between the LOSs from both the two bacteria. LOS from both strains and Lipid A from wild type A. vitis are now examined for their HR potential in tobacco leaves and grapevine roots

    Resúmenes

    No full text
    corecore