19 research outputs found

    Functionally specified protein signatures distinctive for each of the different blue copper proteins

    Get PDF
    BACKGROUND: Proteins having similar functions from different sources can be identified by the occurrence in their sequences, a conserved cluster of amino acids referred to as pattern, motif, signature or fingerprint. The wide usage of protein sequence analysis in par with the growth of databases signifies the importance of using patterns or signatures to retrieve out related sequences. Blue copper proteins are found in the electron transport chain of prokaryotes and eukaryotes. The signatures already existing in the databases like the type 1 copper blue, multiple copper oxidase, cyt b/b6, photosystem 1 psaA&B, psaG&K, and reiske iron sulphur protein are not specified signatures for blue copper proteins as the name itself suggests. Most profile and motif databases strive to classify protein sequences into a broad spectrum of protein families. This work describes the signatures designed based on the copper metal binding motifs in blue copper proteins. The common feature in all blue copper proteins is a trigonal planar arrangement of two nitrogen ligands [each from histidine] and one sulphur containing thiolate ligand [from cysteine], with strong interactions between the copper center and these ligands. RESULTS: Sequences that share such conserved motifs are crucial to the structure or function of the protein and this could provide a signature of family membership. The blue copper proteins chosen for the study were plantacyanin, plastocyanin, cucumber basic protein, stellacyanin, dicyanin, umecyanin, uclacyanin, cusacyanin, rusticyanin, sulfocyanin, halocyanin, azurin, pseudoazurin, amicyanin and nitrite reductase which were identified in both eukaryotes and prokaryotes. ClustalW analysis of the protein sequences of each of the blue copper proteins was the basis for designing protein signatures or peptides. The protein signatures and peptides identified in this study were designed involving the active site region involving the amino acids bound to the copper atom. It was highly specific for each kind of blue copper protein and the false picks were minimized. The set of signatures designed specifically for the BCP's was entirely different from the existing broad spectrum signatures as mentioned in the background section. CONCLUSIONS: These signatures can be very useful for the annotation of uncharacterized proteins and highly specific to retrieve blue copper protein sequences of interest from the non redundant databases containing a large deposition of protein sequences

    Long-Chain Acyl Coenzyme A Synthetase 1 Overexpression in Primary Cultured Schwann Cells Prevents Long Chain Fatty Acid-Induced Oxidative Stress and Mitochondrial Dysfunction

    Full text link
    Aims: High circulating long chain fatty acids (LCFAs) are implicated in diabetic neuropathy (DN) development. Expression of the long-chain acyl-CoA synthetase 1 (Acsl1) gene, a gene required for LCFA metabolic activation, is altered in human and mouse diabetic peripheral nerve. We assessed the significance of Acsl1 upregulation in primary cultured Schwann cells. Results: Acsl1 overexpression prevented oxidative stress (nitrotyrosine; hydroxyoctadecadienoic acids [HODEs]) and attenuated cellular injury (TUNEL) in Schwann cells following 12?h exposure to LCFAs (palmitate, linoleate, and oleate, 100??M). Acsl1 overexpression potentiated the observed increase in medium to long-chain acyl-carnitines following 12?h LCFA exposure. Data are consistent with increased mitochondrial LCFA uptake, largely directed to incomplete beta-oxidation. LCFAs uncoupled mitochondrial oxygen consumption from ATP production. Acsl1 overexpression corrected mitochondrial dysfunction, increasing coupling efficiency and decreasing proton leak. Innovation: Schwann cell mitochondrial function is critical for peripheral nerve function, but research on Schwann cell mitochondrial dysfunction in response to hyperlipidemia is minimal. We demonstrate that high levels of a physiologically relevant mixture of LCFAs induce Schwann cell injury, but that improved mitochondrial uptake and metabolism attenuate this lipotoxicity. Conclusion: Acsl1 overexpression improves Schwann cell function and survival following high LCFA exposure in vitro; however, the observed endogenous Acsl1 upregulation in peripheral nerve in response to diabetes is not sufficient to prevent the development of DN in murine models of DN. Therefore, targeted improvement in Schwann cell metabolic disposal of LCFAs may improve DN phenotypes. Antioxid. Redox Signal. 21, 588?600.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140243/1/ars.2013.5248.pd

    Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis

    Full text link
    Objective Patients with systemic lupus erythematosus (SLE) have a notable increase in atherothrombotic cardiovascular disease (CVD) which is not explained by the Framingham risk equation. In vitro studies indicate that type I interferons (IFNs) may play prominent roles in increased CV risk in SLE. However, the in vivo relevance of these findings, with regard to the development of CVD, has not been characterized. This study was undertaken to examine the role of type I IFNs in endothelial dysfunction, aberrant vascular repair, and atherothrombosis in murine models of lupus and atherosclerosis. Methods Lupus‐prone New Zealand mixed 2328 (NZM) mice and atherosclerosis‐prone apolipoprotein E– knockout (apoE −/− ) mice were compared to mice lacking type I IFN receptor (INZM and apoE −/− IFNAR −/− mice, respectively) with regard to endothelial vasodilatory function, endothelial progenitor cell (EPC) function, in vivo neoangiogenesis, plaque development, and occlusive thrombosis. Similar experiments were performed using NZM and apoE −/− mice exposed to an IFNα‐containing or empty adenovirus. Results Loss of type I IFN receptor signaling improved endothelium‐dependent vasorelaxation, lipoprotein parameters, EPC numbers and function, and neoangiogenesis in lupus‐prone mice, independent of disease activity or sex. Further, acute exposure to IFNα impaired endothelial vasorelaxation and EPC function in lupus‐prone and non–lupus‐prone mice. Decreased atherosclerosis severity and arterial inflammatory infiltrates and increased neoangiogenesis were observed in apoE −/− IFNAR −/− mice, compared to apoE −/− mice, while NZM and apoE −/− mice exposed to IFNα developed accelerated thrombosis and platelet activation. Conclusion These results support the hypothesis that type I IFNs play key roles in the development of premature CVD in SLE and, potentially, in the general population, through pleiotropic deleterious effects on the vasculature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93543/1/34504_ftp.pd

    Metabolomic Profiling Reveals a Role for Androgen in Activating Amino Acid Metabolism and Methylation in Prostate Cancer Cells

    Get PDF
    Prostate cancer is the second leading cause of cancer related death in American men. Development and progression of clinically localized prostate cancer is highly dependent on androgen signaling. Metastatic tumors are initially responsive to anti-androgen therapy, however become resistant to this regimen upon progression. Genomic and proteomic studies have implicated a role for androgen in regulating metabolic processes in prostate cancer. However, there have been no metabolomic profiling studies conducted thus far that have examined androgen-regulated biochemical processes in prostate cancer. Here, we have used unbiased metabolomic profiling coupled with enrichment-based bioprocess mapping to obtain insights into the biochemical alterations mediated by androgen in prostate cancer cell lines. Our findings indicate that androgen exposure results in elevation of amino acid metabolism and alteration of methylation potential in prostate cancer cells. Further, metabolic phenotyping studies confirm higher flux through pathways associated with amino acid metabolism in prostate cancer cells treated with androgen. These findings provide insight into the potential biochemical processes regulated by androgen signaling in prostate cancer. Clinically, if validated, these pathways could be exploited to develop therapeutic strategies that supplement current androgen ablative treatments while the observed androgen-regulated metabolic signatures could be employed as biomarkers that presage the development of castrate-resistant prostate cancer

    Long-Chain Acyl Coenzyme A Synthetase 1 Overexpression in Primary Cultured Schwann Cells Prevents Long Chain Fatty Acid-Induced Oxidative Stress and Mitochondrial Dysfunction

    No full text
    Aims: High circulating long chain fatty acids (LCFAs) are implicated in diabetic neuropathy (DN) development. Expression of the long-chain acyl-CoA synthetase 1 (Acsl1) gene, a gene required for LCFA metabolic activation, is altered in human and mouse diabetic peripheral nerve. We assessed the significance of Acsl1 upregulation in primary cultured Schwann cells. Results: Acsl1 overexpression prevented oxidative stress (nitrotyrosine; hydroxyoctadecadienoic acids [HODEs]) and attenuated cellular injury (TUNEL) in Schwann cells following 12?h exposure to LCFAs (palmitate, linoleate, and oleate, 100??M). Acsl1 overexpression potentiated the observed increase in medium to long-chain acyl-carnitines following 12?h LCFA exposure. Data are consistent with increased mitochondrial LCFA uptake, largely directed to incomplete beta-oxidation. LCFAs uncoupled mitochondrial oxygen consumption from ATP production. Acsl1 overexpression corrected mitochondrial dysfunction, increasing coupling efficiency and decreasing proton leak. Innovation: Schwann cell mitochondrial function is critical for peripheral nerve function, but research on Schwann cell mitochondrial dysfunction in response to hyperlipidemia is minimal. We demonstrate that high levels of a physiologically relevant mixture of LCFAs induce Schwann cell injury, but that improved mitochondrial uptake and metabolism attenuate this lipotoxicity. Conclusion: Acsl1 overexpression improves Schwann cell function and survival following high LCFA exposure in vitro; however, the observed endogenous Acsl1 upregulation in peripheral nerve in response to diabetes is not sufficient to prevent the development of DN in murine models of DN. Therefore, targeted improvement in Schwann cell metabolic disposal of LCFAs may improve DN phenotypes. Antioxid. Redox Signal. 21, 588?600.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140243/1/ars.2013.5248.pd

    Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease

    No full text
    The endothelial dysfunction of Fabry disease results from α-galactosidase A deficiency leading to the accumulation of globotriaosylceramide. Vasculopathy in the α-galactosidase A null mouse is manifested as oxidant-induced thrombosis, accelerated atherogenesis, and impaired arterial reactivity. To better understand the pathogenesis of Fabry disease in humans, we generated a human cell model by using RNA interference. Hybrid endothelial cells were transiently transfected with small interfering RNA (siRNA) specifically directed against α-galactosidase A. Knockdown of α-galactosidase A was confirmed using immunoblotting and globotriaosylceramide accumulation. Endothelial nitric oxide synthase (eNOS) activity was correspondingly decreased by >60%. Levels of 3-nitrotyrosine (3NT), a specific marker for reactive nitrogen species and quantified using mass spectrometry, increased by 40- to 120-fold without corresponding changes in other oxidized amino acids, consistent with eNOS-derived reactive nitrogen species as the source of the reactive oxygen species. eNOS uncoupling was confirmed by the observed increase in free plasma and protein-bound aortic 3NT levels in the α-galactosidase A knockout mice. Finally, 3NT levels, assayed in biobanked plasma samples from patients with classical Fabry disease, were over sixfold elevated compared with age- and gender-matched controls. Thus, 3NT may serve as a biomarker for the vascular involvement in Fabry diseas

    Inflammatory Stimuli Induce Acyl-CoA Thioesterase 7 and Remodeling of Phospholipids Containing Unsaturated Long ( 65C20)-Acyl Chains in Macrophages

    No full text
    Acyl-CoA thioesterase 7 (ACOT7) is an intracellular enzyme that converts acyl-CoAs to free fatty acids. ACOT7 is induced by lipopolysaccharide (LPS), thus we investigated downstream effects of LPS-induced induction of ACOT7 and its role in inflammatory settings in myeloid cells. Enzymatic thioesterase activity assays in wildtype and ACOT7-deficient macrophage lysates indicated that endogenous ACOT7 contributes a significant fraction of total acyl-CoA thioesterase activity towards C20:4-CoA, C20:5-CoA and C22:6-CoA, but contributes little activity towards shorter acyl-CoA species. Lipidomic analyses revealed that LPS causes a dramatic increase primarily in bis(monoacylglycero)phosphate species containing long ( 65C20) polyunsaturated acyl-chains in macrophages, and that the limited effect observed by ACOT7-deficiency is restricted to glycerophospholipids containing 20-carbon unsaturated acyl-chains. Furthermore, ACOT7-deficiency did not detectably alter the ability of LPS to induce cytokines or prostaglandin E2 production in macrophages. Consistently, although ACOT7 was induced in macrophages from diabetic mice, hematopoietic ACOT7-deficiency did not alter the stimulatory effect of diabetes on systemic inflammation or atherosclerosis in LDL receptor-deficient mice. Thus, inflammatory stimuli induce ACOT7 and remodeling of phospholipids containing unsaturated long ( 65C20)-acyl chains in macrophages, and though ACOT7 has preferential thioesterase activity toward these lipid species, loss of ACOT7 has no major detrimental effect on macrophage inflammatory phenotypes

    Endothelial Acyl-CoA Synthetase 1 Is Not Required for Inflammatory and Apoptotic Effects of a Saturated Fatty Acid-Rich Environment

    No full text
    OBJECTIVE: Saturated fatty acids, such as palmitic and stearic acid, cause detrimental effects in endothelial cells (ECs) and have been suggested to contribute to macrophage accumulation in adipose tissue and the vascular wall in states of obesity and insulin resistance. Long-chain fatty acids are believed to require conversion into acyl-CoA derivatives to exert most of their detrimental effects, a reaction catalyzed by acyl-CoA synthetases (ACSL). The objective of this study was to investigate the role of ACSL1, an ACSL isoform previously shown to mediate inflammatory effects in myeloid cells, in regulating EC responses to a saturated fatty acid-rich environment in vitro and in vivo. METHODS AND RESULTS: Saturated fatty acids caused increased inflammatory activation, ER stress, and apoptosis in mouse microvascular ECs. Forced ACSL1 overexpression exacerbated the effects of saturated fatty acids on apoptosis and ER stress. However, endothelial ACSL1-deficiency did not protect against the effects of saturated fatty acids in vitro, nor did it protect insulin resistant mice fed a saturated fatty acid-rich diet from macrophage adipose tissue accumulation or increased aortic adhesion molecule expression. CONCLUSION: Endothelial ACSL1 is not required for inflammatory and apoptotic effects of a saturated fatty acid-rich environment
    corecore