15 research outputs found

    Quantum Circuits for Incompletely Specified Two-Qubit Operators

    Full text link
    While the question ``how many CNOT gates are needed to simulate an arbitrary two-qubit operator'' has been conclusively answered -- three are necessary and sufficient -- previous work on this topic assumes that one wants to simulate a given unitary operator up to global phase. However, in many practical cases additional degrees of freedom are allowed. For example, if the computation is to be followed by a given projective measurement, many dissimilar operators achieve the same output distributions on all input states. Alternatively, if it is known that the input state is |0>, the action of the given operator on all orthogonal states is immaterial. In such cases, we say that the unitary operator is incompletely specified; in this work, we take up the practical challenge of satisfying a given specification with the smallest possible circuit. In particular, we identify cases in which such operators can be implemented using fewer quantum gates than are required for generic completely specified operators.Comment: 15 page

    Synthesis of Quantum Logic Circuits

    Full text link
    We discuss efficient quantum logic circuits which perform two tasks: (i) implementing generic quantum computations and (ii) initializing quantum registers. In contrast to conventional computing, the latter task is nontrivial because the state-space of an n-qubit register is not finite and contains exponential superpositions of classical bit strings. Our proposed circuits are asymptotically optimal for respective tasks and improve published results by at least a factor of two. The circuits for generic quantum computation constructed by our algorithms are the most efficient known today in terms of the number of expensive gates (quantum controlled-NOTs). They are based on an analogue of the Shannon decomposition of Boolean functions and a new circuit block, quantum multiplexor, that generalizes several known constructions. A theoretical lower bound implies that our circuits cannot be improved by more than a factor of two. We additionally show how to accommodate the severe architectural limitation of using only nearest-neighbor gates that is representative of current implementation technologies. This increases the number of gates by almost an order of magnitude, but preserves the asymptotic optimality of gate counts.Comment: 18 pages; v5 fixes minor bugs; v4 is a complete rewrite of v3, with 6x more content, a theory of quantum multiplexors and Quantum Shannon Decomposition. A key result on generic circuit synthesis has been improved to ~23/48*4^n CNOTs for n qubit

    Minimal Universal Two-qubit Quantum Circuits

    Full text link
    We give quantum circuits that simulate an arbitrary two-qubit unitary operator up to global phase. For several quantum gate libraries we prove that gate counts are optimal in worst and average cases. Our lower and upper bounds compare favorably to previously published results. Temporary storage is not used because it tends to be expensive in physical implementations. For each gate library, best gate counts can be achieved by a single universal circuit. To compute gate parameters in universal circuits, we only use closed-form algebraic expressions, and in particular do not rely on matrix exponentials. Our algorithm has been coded in C++.Comment: 8 pages, 2 tables and 4 figures. v3 adds a discussion of asymetry between Rx, Ry and Rz gates and describes a subtle circuit design problem arising when Ry gates are not available. v2 sharpens one of the loose bounds in v1. Proof techniques in v2 are noticeably revamped: they now rely less on circuit identities and more on directly-computed invariants of two-qubit operators. This makes proofs more constructive and easier to interpret as algorithm

    Reversible Logic Circuit Synthesis

    Full text link
    Reversible or information-lossless circuits have applications in digital signal processing, communication, computer graphics and cryptography. They are also a fundamental requirement in the emerging field of quantum computation. We investigate the synthesis of reversible circuits that employ a minimum number of gates and contain no redundant input-output line-pairs (temporary storage channels). We prove constructively that every even permutation can be implemented without temporary storage using NOT, CNOT and TOFFOLI gates. We describe an algorithm for the synthesis of optimal circuits and study the reversible functions on three wires, reporting distributions of circuit sizes. We study circuit decompositions of reversible circuits where gates of the same type are next to each other. Finally, in an application important to quantum computing, we synthesize oracle circuits for Grover's search algorithm, and show a significant improvement over a previously proposed synthesis algorithm.Comment: 30 pages, 14 figs+tables. To appear in IEEE Transactions on Computer-Aided Design of Electronic Circuits. Contains results presented at the Intl. Conf. on Computer-Aided Design, 2002 and new material on decompositions of reversible circuits where gates of the same type are next to each othe
    corecore