24 research outputs found
Recommended from our members
Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection.
The mechanisms of postacute medical conditions and unexplained symptoms after SARS-CoV-2 infection [Long Covid (LC)] are incompletely understood. There is growing evidence that viral persistence, immune dysregulation, and T cell dysfunction may play major roles. We performed whole-body positron emission tomography imaging in a well-characterized cohort of 24 participants at time points ranging from 27 to 910 days after acute SARS-CoV-2 infection using the radiopharmaceutical agent [18F]F-AraG, a selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the postacute COVID-19 group, which included those with and without continuing symptoms, was higher compared with prepandemic controls in many regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. T cell activation in the spinal cord and gut wall was associated with the presence of LC symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms specifically. Increased T cell activation in these tissues was also observed in many individuals without LC. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization of SARS-CoV-2 RNA and immunohistochemical studies in a subset of five participants with LC symptoms. We identified intracellular SARS-CoV-2 single-stranded spike protein-encoding RNA in rectosigmoid lamina propria tissue in all five participants and double-stranded spike protein-encoding RNA in three participants up to 676 days after initial COVID-19, suggesting that tissue viral persistence could be associated with long-term immunologic perturbations
Recommended from our members
Assessing the Association between Leptin and Bone Mineral Density in HIV-Infected Men.
HIV-infected individuals are at risk for decreased bone mineral density (BMD). The known risk factors for bone loss do not fully explain the increased risk in this population. There is emerging evidence that leptin, a hormone secreted by adipocytes, plays an important role in bone metabolism. Several studies have assessed the relationship between leptin and bone density in healthy adults, but there are few such studies in HIV-infected individuals. Furthermore, HIV infected individuals on antiretroviral therapy are at increased risk for altered fat distribution, which may impact the relationship between leptin and BMD. In a cross-sectional analysis of data in 107 HIV-infected men, we determined whether serum leptin levels were associated with whole-body BMD and bone mineral content measured by dual-energy X-ray absorptiometry (DEXA), after adjusting for confounders including body fat distribution. We found an inverse association between leptin and bone density in those with peripheral lipoatrophy, defined objectively as <3 kg appendicular fat by DEXA, but no such relationship was seen in those with >3 kg appendicular fat. This result suggests that fat distribution may modify the relationship between leptin and bone density
Recommended from our members
Short-term isocaloric fructose restriction lowers apoC-III levels and yields less atherogenic lipoprotein profiles in children with obesity and metabolic syndrome.
Background and aimsDietary fructose may play a role in the pathogenesis of metabolic syndrome (MetS). In a recently published study of obese children with MetS, we showed that isocaloric fructose restriction reduced fasting triglyceride (TG) and LDL-cholesterol (LDL-C). In these ancillary analyses, we tested the hypothesis that these effects were also accompanied by improved quantitative and qualitative changes in LDL and HDL subclasses and their apolipoproteins; as well as change in VLDL, particularly apoC-III.MethodsObese children with MetS (n = 37) consumed a diet that matched self-reported macronutrient composition for nine days, with the exception that dietary fructose was reduced from 11.7 ± 4.0% to 3.8 ± 0.5% of daily calories and substituted with glucose (in starch). Participants underwent fasting biochemical analyses on Days 0 and 10. HDL and LDL subclasses were analyzed using the Lipoprint HDL and LDL subfraction analysis systems from Quantimetrix.ResultsSignificant reductions in apoB (78 ± 24 vs. 66 ± 24 mg/dl) apoC-III (8.7 ± 3.5 vs. 6.5 ± 2.6 mg/dl) and apoE (4.6 ± 2.3 vs. 3.6 ± 1.1 mg/dl), all p < 0.001) were observed. LDL size increased by 0.87 Å (p = 0.008). Small dense LDL was present in 25% of our cohort and decreased by 68% (p = 0.04). Small HDL decreased by 2.7% (p < 0.001) and large HDL increased by 2.4% (p = 0.04). The TG/HDL-C ratio decreased from 3.1 ± 2.5 to 2.4 ± 1.4 (p = 0.02). These changes in fasting lipid profiles correlated with changes in insulin sensitivity.ConclusionsIsocaloric fructose restriction for 9 days improved lipoprotein markers of CVD risk in children with obesity and MetS. The most dramatic reduction was seen for apoC-III, which has been associated with atherogenic hypertriglyceridemia
Recommended from our members
Short-Term Isocaloric Fructose Restriction Lowers apoC-III Levels and Yields Less Atherogenic Lipoprotein Profiles in Children with Obesity and Metabolic Syndrome
Background and aimsDietary fructose may play a role in the pathogenesis of metabolic syndrome (MetS). In a recently published study of obese children with MetS, we showed that isocaloric fructose restriction reduced fasting triglyceride (TG) and LDL-cholesterol (LDL-C). In these ancillary analyses, we tested the hypothesis that these effects were also accompanied by improved quantitative and qualitative changes in LDL and HDL subclasses and their apolipoproteins; as well as change in VLDL, particularly apoC-III.MethodsObese children with MetS (n = 37) consumed a diet that matched self-reported macronutrient composition for nine days, with the exception that dietary fructose was reduced from 11.7 ± 4.0% to 3.8 ± 0.5% of daily calories and substituted with glucose (in starch). Participants underwent fasting biochemical analyses on Days 0 and 10. HDL and LDL subclasses were analyzed using the Lipoprint HDL and LDL subfraction analysis systems from Quantimetrix.ResultsSignificant reductions in apoB (78 ± 24 vs. 66 ± 24 mg/dl) apoC-III (8.7 ± 3.5 vs. 6.5 ± 2.6 mg/dl) and apoE (4.6 ± 2.3 vs. 3.6 ± 1.1 mg/dl), all p < 0.001) were observed. LDL size increased by 0.87 Å (p = 0.008). Small dense LDL was present in 25% of our cohort and decreased by 68% (p = 0.04). Small HDL decreased by 2.7% (p < 0.001) and large HDL increased by 2.4% (p = 0.04). The TG/HDL-C ratio decreased from 3.1 ± 2.5 to 2.4 ± 1.4 (p = 0.02). These changes in fasting lipid profiles correlated with changes in insulin sensitivity.ConclusionsIsocaloric fructose restriction for 9 days improved lipoprotein markers of CVD risk in children with obesity and MetS. The most dramatic reduction was seen for apoC-III, which has been associated with atherogenic hypertriglyceridemia
Effects of Insulin-Like Growth Factor (IGF)-I/IGF-Binding Protein-3 Treatment on Glucose Metabolism and Fat Distribution in Human Immunodeficiency Virus-Infected Patients with Abdominal Obesity and Insulin Resistance
Context: HIV-infected patients on antiretroviral therapy are at increased risk for excess visceral adiposity and insulin resistance. Treatment with GH decreases visceral adiposity but worsens glucose metabolism. IGF-I, which mediates many of the effects of GH, improves insulin sensitivity in HIV-negative individuals
Recommended from our members
SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency.
Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics