32 research outputs found

    750 MHz radio frequency quadrupole with trapezoidal vanes for carbon ion therapy

    Full text link
    High-frequency linear accelerators are very suitable for carbon ion therapy, thanks to the reduced operational costs and the high beam quality with respect to synchrotrons, which are presently the only available technology for this application. In the framework of the development of a new linac for carbon ion therapy, this article describes the design of a compact 750 MHz Radio Frequency Quadrupole (RFQ) with trapezoidal vanes. A new semi-analytic approach to design the trapezoidal-vane RFQ is introduced together with the relevant beam dynamics properties. The RFQ is split into two decoupled rf cavities, both of which make use of a novel dipole detuning technique by means of length adjustment. The splitting is described both from the rf and the beam dynamics point of view. The paper concludes with the rf design of the full structure, including maximum surface field and thermal studies.Comment: Revised version published in Physical Review Accelerators and Beams on 31 December 202

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p < 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p < 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p < 0.0001) or urgent (20.4% vs. 38.5%; p < 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p < 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice

    Design of a novel linear accelerator for carbon ion therapy

    No full text
    Hadron therapy has been first proposed in 1946 by Robert Wilson as an advanced form of radiotherapy. Hadrons, such as protons and light ions, release the largest part of their energy in a narrow space range, called Bragg peak, allowing to target the tumor cells more precisely than photon beams. Despite this advantage, the number of proton and carbon ion therapy centers is still small compared to conventional radiotherapy. One of the reasons for this disparity can be found in the treatment costs of hadron therapy, which is three to four times higher than for conventional radiotherapy, due to the larger and more complex accelerators needed, which imply typically the construction of entirely new buildings, with the associated medical and technical personnel. The limited availability of hadron therapy has also consequences on the number of patients that can be enrolled in clinical trials, that are necessary to assess the effective clinical advantages with respect to other, less costly, therapies. The main goal in the development of hadron therapy technology is to reduce as much as possible the cost of the machines, by proposing smaller and more efficient solutions, easing the access to this treatment. Proton therapy has already moved in this direction, bringing the accelerator technology to industrialization and offering compact turn-key solutions that reduce the cost gap with respect to radiotherapy. The few carbon ion centers worldwide, on the contrary, are still based on bespoke solutions: the development of carbon ion machines is still carried out, in most of the cases, in the framework of research laboratories and is far from the industrialization step needed to improve the accessibility to the service. Synchrotrons are the only technology used in carbon ion therapy centers. However, in the past years, the idea of using linear accelerators has been developed, initially for proton therapy, due to the advantages it would bring in terms of costs and therapeutic beam quality. At present, there are worldwide two medical proton linacs being commissioned, while linacs for carbon ions are still at a conceptual stage in a handful of research centers. The general purpose of this thesis work is to propose the beam dynamics design of a 3 GHz bent linear accelerator for carbon ion therapy from the pre-injector, based on the pioneering work done at the European Organization fro Nuclear Research (CERN) on a proton machine, to the very end of the linac

    EARLY-CAREER RESEARCHERS IN MEDICAL APPLICATIONS @ CERN – SHORT TALKS

    No full text
    High-frequency linear accelerators are very suitable for carbon ion therapy, thanks to the reduced operational costs and the high beam quality with respect to synchrotrons, which are presently the only available technology for this application. The ‘bent linac’, based on the latest accelerators technologies developed at CERN, introduces an innovative design tailored to better fit the accelerator footprint into existing hospital facilities and, at the same time, to provide a high quality, stable beam in the full range of operational energies

    Quasi-Alvarez drift-tube linac structures for heavy ion therapy accelerator facilities

    No full text
    Next generation heavy ion therapy and research facilities require efficient accelerating structures. Particularly, at low beam energies, right after the standard scheme of the ion source, low-energy beam transfer, and radio-frequency quadrupole (RFQ), several options for accelerating structures are available including the classic drift-tube linac (DTL), the interdigital H-mode DTL (IH-DTL), and superconducting quarter-wave resonators. These structures need to integrate the beam acceleration with the focusing channel, nowadays typically provided by permanent-magnet quadrupoles (PMQs). The frequency of operation needs to be in line with that of the RFQ structure, and it has been chosen at 750 MHz for practical considerations for the Next Ion Medical Machine Study (NIMMS) that is the application focus of this manuscript. While classic DTL structures at low ion beam energies do not provide enough space for PMQs at that frequency within a single ÎČλ period, IH-DTL structures do not provide the regular focusing channel with consequences on the beam quality. For these reasons, quasi-Alvarez drift-tube linac (QA-DTL) structures are reevaluated in this manuscript as they might fill this gap. They have not received much attention in the literature so far and therefore their design is described in detail. The design procedure presented here may serve as a blueprint for DTL design in general. In addition to the overall rf design, axial field stabilization with a new technique and multiphysics studies of the rf structure are described. A cost estimation completes the NIMMS QA-DTL study

    High Frequency RFQ Design and LEBT Matching for the CERN TwinEBIS Ion Source

    No full text
    An Electron Beam Ion Source (EBIS) is being developed at CERN for production of highly charged ions, for instance fully stripped 12^{12}C. The focus has so far been on the electron gun design, aiming for a high current compression, which results in a rapid ionisation process and thereby high repetition rate. Initial commissioning tests of such an electron gun, the so-called MEDeGUN, have already been performed and we are now in the process of designing a multi-purpose ion extraction and diagnostics line. The Low Energy Beam Transport (LEBT) line will transport the ions into the downstream Radio Frequency Quadrupole (RFQ) with a nominal energy of 15 keV/u. The 750 MHz RFQ is designed to accelerate ions from 15 keV/u up to the final energy of 2.5 MeV/u. After the RFQ design was finalized and its acceptance calculated, the beam matching to the RFQ was studied, finding a set of parameters for the LEBT that maximize the transmission through the RFQ. Details of the RFQ design, of the LEBT matching procedure and its final results are illustrated in this paper

    Electron gun producing beams with controllable current density

    No full text
    The existing Brillouin-type electron gun at the TwinEBIS test bench is, according to Herrmann theory, capable of producing an electron beam with a current density of 3850 A/cm2^{2} in the 2 T solenoid. To control the electron beam current density and the magnetic flux inside the beam, the existing electron gun - now using purely electrostatic focusing - can be modified by permitting magnetic flux to reach the cathode. In such a configuration, the stabilizing magnetic flux inside the electron beam can be controlled by changing the current in the magnet coil surrounding the cathode. The radial oscillations of the electron beam, resulting from the increased magnetic field on the cathode, can be significantly reduced by employing a non-adiabatic magnetic field near the electron gun. This method has been recently developed and successfully used at REXEBIS at CERN. We present the computer simulations of such electro-optical system

    A Carbon Minibeam Irradiation Facility Concept

    No full text
    In minibeam therapy, the sparing of deep-seated normal tissue is limited by transverse beam spread caused by small-angle scattering. Contrary to proton minibeams, helium or carbon minibeams experience less deflection, which potentially reduces side effects. To verify this potential, an irradiation facility for preclinical and clinical studies is needed. This manuscript presents a concept for a carbon minibeam irradiation facility based on a LINAC design for conventional carbon therapy. A quadrupole triplet focuses the LINAC beam to submillimeter minibeams. A scanning and a dosimetry unit are provided to move the minibeam over the target and monitor the applied dose. The beamline was optimized by TRAVEL simulations. The interaction between beam and these components and the resulting beam parameters at the focal plane is evaluated by TOPAS simulations. A transverse beamwidth of 1000 results for carbon energies of 100 MeV/u and 430 MeV/u (about 3 cm and 30 cm range in water) whereby the average beam current is about 30 nA. Therefore, the presented irradiation facility exceeds the requirements for hadron minibeam therapy

    Automating beam dump failure detection using computer vision

    No full text
    The CERN SPS Beam Dump System (SBDS) is responsible for disposing the beam in the SPS in case of any machine malfunctioning or end of cycled operation.This is achieved by the actuation of kicker magnets with predefined pulses, which aim to: i) deviate the beam towards the absorber block (TIDVG); ii) dilute the particle density. Evidently, a malfunction of this system may have negative consequences, such as the absorber block degrading if the beam is not sufficiently diluted, unwanted activation of the surroundings or even damage to the vacuum chamber in case of complete failure.By leveraging a combination of real images from a beam screen device and data from simulations, we train an online monitoring system to identify potential failures of the SBDS from real-time images. This work improves the safety of the operation of the SPS and contributes towards the goal of automating the operation of accelerators
    corecore