463 research outputs found
Bog plant/lichen tissue nitrogen and sulfur concentrations as indicators of emissions from oil sands development in Alberta, Canada
Increasing gaseous emissions of nitrogen (N) and sulfur (S) associated with oil sands development in northern Alberta (Canada) has led to changing regional wet and dry N and S deposition regimes. We assessed the potential for using bog plant/lichen tissue chemistry (N and S concentrations, C:N and C:S ratios, in 10 plant/lichen species) to monitor changing atmospheric N and S deposition through sampling at five bog sites, 3-6 times per growing season from 2009 to 2016. During this 8-year period, oil sands N emissions steadily increased, while S emissions steadily decreased. We examined the following: (1) whether each species showed changes in tissue chemistry with increasing distance from the Syncrude and Suncor upgrader stacks (the two largest point sources of N and S emissions); (2) whether tissue chemistry changed over the 8 year period in ways that were consistent with increasing N and decreasing S emissions from oil sands facilities; and (3) whether tissue chemistry was correlated with growing season wet deposition of NH4+-N, NO3--N, or SO42--S. Based on these criteria, the best biomonitors of a changing N deposition regime were Evernia mesomorpha, Sphagnum fuscum, and Vaccinium oxycoccos. The best biomonitors of a changing S deposition regime were Evernia mesomorpha, Cladonia mitis, Sphagnum fuscum, Sphagnum capillifolium, Vaccinium oxycoccos, and Picea mariana. Changing N and S deposition regimes in the oil sands region appear to be influencing N and S cycling in what once were pristine ombrotrophic bogs, to the extent that these bogs may effectively monitor future spatial and temporal patterns of deposition
Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change
Copyright 2008 by the American Geophysical Union.
0148-0227/08/2007JD009092The sensitivity of secondary organic aerosol (SOA) concentration to changes in
climate and emissions is investigated using a coupled global atmosphere-land model
driven by the year 2100 IPCC A1B scenario predictions. The Community Atmosphere
Model (CAM3) is updated with recent laboratory determined yields for SOA formation
from monoterpene oxidation, isoprene photooxidation and aromatic photooxidation.
Biogenic emissions of isoprene and monoterpenes are simulated interactively using the
Model of Emissions of Gases and Aerosols (MEGAN2) within the Community Land
Model (CLM3). The global mean SOA burden is predicted to increase by 36% in 2100,
primarily the result of rising biogenic and anthropogenic emissions which independently
increase the burden by 26% and 7%. The later includes enhanced biogenic SOA
formation due to increased emissions of primary organic aerosol (5–25% increases in
surface SOA concentrations in 2100). Climate change alone (via temperature, removal
rates, and oxidative capacity) does not change the global mean SOA production, but the
global burden increases by 6%. The global burden of anthropogenic SOA experiences
proportionally more growth than biogenic SOA in 2100 from the net effect of climate and
emissions (67% increase predicted). Projected anthropogenic land use change for
2100 (A2) is predicted to reduce the global SOA burden by 14%, largely the result of
cropland expansion. South America is the largest global source region for SOA in the
present day and 2100, but Asia experiences the largest relative growth in SOA production
by 2100 because of the large predicted increases in Asian anthropogenic aromatic
emissions. The projected decrease in global sulfur emissions implies that SOA will
contribute a progressively larger fraction of the global aerosol burden
A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes
This work compares two electrode materials used to mineralize phenol contained in waste waters. Two disks covered with either boron doped diamond (BDD) or PbO2 were used as anodes in a one compartment flow cell under the same hydrodynamic conditions. Efficiencies of galvanostatic electrolyses are compared on the basis of measurements of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD). Galvanostatic electrolyses were monitored by analysis of phenol and of its oxidation derivatives to evaluate the operating time needed for complete elimination of toxic aromatics. The experimental current efficiency is close to the theoretical value for the BDD electrode. Other parameters being equal, phenol species disappeared at the same rate using the two electrode materials but the BDD anode showed better efficiency to eliminate TOC and COD. Moreover, during the electrolysis less intermediates are formed with BDD compared to PbO2 whatever the current density. A comparison of energy consumption is given based on the criterion of 99% removal of aromatic compounds
Global patterns of body size evolution are driven by precipitation in legless amphibians
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordBody size shapes ecological interactions across and within species, ultimately influencing the evolution of large-scale biodiversity patterns. Therefore, macroecological studies of body size provide a link between spatial variation in selection regimes and the evolution of animal assemblages through space. Multiple hypotheses have been formulated to explain the evolution of spatial gradients of animal body size, predominantly driven by thermal (Bergmann's rule), humidity (‘water conservation hypothesis’) and resource constraints (‘resource rule’, ‘seasonality rule’) on physiological homeostasis. However, while integrative tests of all four hypotheses combined are needed, the focus of such empirical efforts needs to move beyond the traditional endotherm–ectotherm dichotomy, to instead interrogate the role that variation in lifestyles within major lineages (e.g. classes) play in creating neglected scenarios of selection via analyses of largely overlooked environment–body size interactions. Here, we test all four rules above using a global database spanning 99% of modern species of an entire Order of legless, predominantly underground-dwelling amphibians (Gymnophiona, or caecilians). We found a consistent effect of increasing precipitation (and resource abundance) on body size reductions (supporting the water conservation hypothesis), while Bergmann's, the seasonality and resource rules are rejected. We argue that subterranean lifestyles minimize the effects of aboveground selection agents, making humidity a dominant selection pressure – aridity promotes larger body sizes that reduce risk of evaporative dehydration, while smaller sizes occur in wetter environments where dehydration constraints are relaxed. We discuss the links between these principles with the physiological constraints that may have influenced the tropically-restricted global radiation of caecilians.Natural Environment Research Council (NERC)O2National Lottery - Big Lottery Fun
Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)
The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance of the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20% of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. All experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations
Short- and medium-term atmospheric constituent effects of very large solar proton events
International audienceSolar eruptions sometimes produce protons, which impact the Earth's atmosphere. These solar proton events (SPEs) generally last a few days and produce high energy particles that precipitate into the Earth's atmosphere. The protons cause ionization and dissociation processes that ultimately lead to an enhancement of odd-hydrogen and odd-nitrogen in the polar cap regions (>60° geomagnetic latitude). We have used the Whole Atmosphere Community Climate Model (WACCM3) to study the atmospheric impact of SPEs over the period 1963?2005. The very largest SPEs were found to be the most important and caused atmospheric effects that lasted several months after the events. We present the short- and medium-term (days to a few months) atmospheric influence of the four largest SPEs in the past 45 years (August 1972; October 1989; July 2000; and October?November 2003) as computed by WACCM3 and observed by satellite instruments. Polar mesospheric NOx (NO+NO2) increased by over 50 ppbv and mesospheric ozone decreased by over 30% during these very large SPEs. Changes in HNO3, N2O5, ClONO2, HOCl, and ClO were indirectly caused by the very large SPEs in October?November 2003, were simulated by WACCM3, and previously measured by Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). WACCM3 output was also represented by sampling with the MIPAS averaging kernel for a more valid comparison. Although qualitatively similar, there are discrepancies between the model and measurement with WACCM3 predicted HNO3 and ClONO2 enhancements being smaller than measured and N2O5 enhancements being larger than measured. The HOCl enhancements were fairly similar in amounts and temporal variation in WACCM3 and MIPAS. WACCM3 simulated ClO decreases below 50 km, whereas MIPAS mainly observed increases, a very perplexing difference. Upper stratospheric and lower mesospheric NOx increased by over 10 ppbv and was transported during polar night down to the middle stratosphere in several weeks past the SPE. The WACCM3 simulations confirmed the SH HALOE observations of enhanced NOx in September 2000 as a result of the July 2000 SPE and the NH SAGE II observations of enhanced NO2 in March 1990 as a result of the October 1989 SPEs
Experimental nitrogen addition alters structure and function of a boreal poor fen: Implications for critical loads
Bogs and fens cover 6 and 21%, respectively, of the 140,329 km2 Oil Sands Administrative Area in northern Alberta. Regional background atmospheric N deposition is low (b2 kg N ha−1 yr−1 ), but oil sands development has led to increasing N deposition (as high as 17 kg N ha−1 yr−1 ). To examine responses to N deposition, over five years, we experimentally applied N (as NH4NO3) to a poor fen near Mariana Lake, Alberta, unaffected by oil sands activities, at rates of 0, 5, 10, 15, 20, and 25 kg N ha−1 yr−1 , plus controls (no water or N addition). At Mariana Lake Poor Fen (MLPF), increasing N addition: 1) progressively inhibited N2-fixation; 2) had no effect on net primary production (NPP) of Sphagnum fuscum or S. angustifolium, while stimulating S. magellanicum NPP; 3) led to decreased abundance of S. fuscum and increased abundance of S. angustifolium, S. magellanicum, Andromeda polifolia, Vaccinium oxycoccos, and of vascular plants in general; 4) led to an increase in stem N concentrations in S. angustifolium and S. magellanicum, and an increase in leaf N concentrations in Chamaedaphne calyculata, Andromeda polifolia, and Vaccinium oxycoccos; 5) stimulated root biomass and production;6) stimulated decomposition of cellulose, but not of Sphagnum or vascular plant litter; and 7) had no or minimal effects on net N mineralization in surface peat, NH4 +-N, NO3 −-N or DON concentrations in surface porewater, or peat microbial composition. Increasing N addition led to a switch from new N inputs being taken up primarily by Sphagnum to being taken up primarily by shrubs. MLPF responses to increasing N addition did not exhibit threshold triggers, but rather began as soon as N additions increased. Considering all responses to N addition, we recommend a critical load for poor fens in Alberta of 3 kg N ha−1 yr−1
Northern Hemisphere Atmospheric Influence of the Solar Proton Events and Ground Level Enhancement in January 2005
Solar eruptions in early 2005 led substantial barrage of charged particles on the Earth's atmosphere during the January 16-21 period. Proton fluxes were greatly increased during these several days and led to the production ofHO(x)(H, OH, BO2)and NO(x)(N, NO, NO2), which then caused the destruction of ozone. We focus on the Northern polar region, where satellite measurements and simulations with the Whole Atmosphere Community Climate Model (WACCM3) showed large enhancements in mesospheric HO(x) and NO(x) constituents, and associated ozone reductions, due 10 these solar proton events (SPEs). The WACCM3 simulations show enhanced short-lived OH throughout the mesosphere in the 60-82.5degN latitude band due to the SPEs for most days in the Jan.16-2l,2005 period, in reasonable agreement with the Aura Microwave Limb Sounder (MLS) measurements. Mesospheric HO2 is also predicted to be increased by the SPEs, however, the modeled HO2 results are somewhat larger than the MLS measurements. These HO(x) enhancements led to huge predicted and MLS-measured ozone decreases of greater than 40% throughout most of the Northern polar mesosphere during the SPE period. Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements of hydrogen peroxide (H2O2) show increases throughout the stratosphere with highest enhancements of about 60 ppt y in the lowermost mesosphere over the Jan. 16-18, 2005 period due to the solar protons. WACCM3 predictions indicate H2O2 enhancements over the same time period of more than twice that amount. Measurements of nitric acid (HNO3) by both MLS and MIPAS show an increase of about 1 ppbv above background levels in the upper stratosphere during January 16-29, 2005. WACCM3 simulations show only minuscule HNO3 changes in the upper stratosphere during this time period. However due to the small loss rates during winter, polar mesospheric enhancements of NO(x) are computed to be greater than 50 ppbv during the SPE period. Computed NO(x)increases, which were statistically significant at the 95% level, lasted about a month past the SPEs. The SCISAT-I Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) NO(x) measurements and MIPAS NO, measurements for the polar Northern Hemisphere are in reasonable agreement with these predictions. An extremely large ground level enhancement (GLE) occurred during the SPE period on January 20, 2005. We find that protons of energies 300 to 20,000 MeV, not normally included in our computations, led to enhanced lower stratospheric odd nitrogen concentrations of less than 0.1% as a result of this GLE
Microscale distribution patterns of terrestrial bryophytes in a subalpine forest: the use of logistic regression as an interpretive tool
This study investigated microhabitat relationships of terrestrial bryophytes in a subalpine forest of coastal British Columbia. Substratum affinities were characterized for dominant bryophytes. Logistic regression analysis was used to gain insight into the ecological determinants of fine scale (0.1 m2) bryophyte distribution by examining the predictive relationship between bryophyte species occurrence and localized environmental conditions, as well as the coverage of other bryophytes. The predictive relationships were compared to evaluate the relative importance of environmental factors versus interspecific interactions in structuring bryophyte communities. The results indicate that bryophytes show unique responses in their relationships to environmental conditions and other bryophytes. Positive feedback appears to be an important process among terrestrial bryophytes in subalpine forests
- …