3 research outputs found

    Impact of the legume catch crop serradella on subsequent growth and P mobilization under barley in different fertilization treatments.

    No full text
    Legume catch crops can enhance soil fertility and promote the N and P supply of the subsequent main crop, especially with low mineral fertilizer use. However, the specific impact of catch crops on arbuscular mycorrhiza formation of the following main crop is unknown. Therefore, the impact of serradella (Ornithopus sativus) vs. bare fallow was tested on mycorrhiza formation, potential soil enzyme activities and plant-available P under subsequently grown barley (Hordeum vulgare) and different fertilization treatments (P-unfertilized-P0; triple superphosphate-TSP; compost-COM; combined-COM + TSP) in a long-term field experiment in northeastern Germany. Catch cropping significantly increased mycorrhiza formation of barley up to 14% compared to bare fallow. The impact of serradella on mycorrhiza formation exceeded that of the fertilization treatment. Serradella led to increased phosphodiesterase activities and decreased ss-glucosidase activities in soil. Plant availability of P was not significantly affected by serradella. These findings provide initial evidence that even serradella as a non-host crop of mycorrhizal fungi can promote the mycorrhiza formation of the subsequent crop and P mobilization in soil. We conclude that the prolonged vegetation cover of arable soils by the use of catch crops can promote P mobilization and transfer from P pools to the following main crops

    Effect of triple superphosphate and biowaste compost on mycorrhizal colonization and enzymatic P mobilization under maize in a long-term field experiment.

    No full text
    Phosphorus (P) fertilizers and mycorrhiza formation can both significantly improve the P supply of plants, but P fertilizers might inhibit mycorrhiza formation and change the microbial P cycling. To test the dimension and consequences of P fertilizer impacts under maize (Zea mays L.), three fertilizer treatments (1) triple superphosphate (TSP, 21-30 kg P ha(-1) annually), biowaste compost (ORG, 30 Mg ha(-1) wet weight every third year) and a combination of both (OMI) were compared to a non-P-fertilized control (C) in 2015 and 2016. The test site was a long-term field experiment on a Stagnic Cambisol in Rostock (NE Germany). Soil microbial biomass P (P-mic) and soil enzyme activities involved in P mobilization (phosphatases and ss-glucosidase), plant-available P content (double lactate-extract; P-DL), mycorrhizal colonization, shoot biomass, and shoot P concentrations were determined. P deficiency led to decreased P immobilization in microbial biomass, but the maize growth was not affected. TSP application alone promoted the P uptake by the microbial biomass but reduced the mycorrhizal colonization of maize compared to the control by more than one third. Biowaste compost increased soil enzyme activities in the P cycling, increased P-mic and slightly decreased the mycorrhizal colonization of maize. Addition of TSP to biowaste compost increased the content of P-DL in soil to the level of optimal plant supply. Single TSP supply decreased the ratio of P-DL:P-mic to 1:1 from about 4:1 in the control. Decreased plant-benefits from mycorrhizal symbiosis were assumed from decreased mycorrhizal colonization of maize with TSP supply. The undesirable side effects of TSP supply on the microbial P cycling can be alleviated by the use of compost. Thus, it can be concluded that the plant-availability of P from soil amendments is controlled by the amendment-specific microbial P cycling and, likely, P transfer to plants
    corecore