5 research outputs found

    Study of decay properties for Ba to Nd nuclei relevant for the formation of the r-process rare-earth peak (A similar to 160)

    Full text link
    At the RIKEN Nishina Center, exotic neutron-rich isotopes of Ba, La, Ce, Pr, and Nd were measured. This work reports their half-lives (T1/2) and β-delayed neutron-emission probabilities (Pxn). The setup consisted of the BigRIPS in-flight separator for particle identification, the Advanced Implantation Detector Array (AIDA) for ions and β detection, and the BRIKEN neutron counter for neutron detection. Using this arrangement, 4 new T1/2 and 14 new P1n were measured. Furthermore, 38 T1/2 and 2 P1n values were remeasured, decreasing the uncertainties for some of them. In addition to improving predictions of nucleosynthesis models that describe the production of the rare-earth peak at A ∼ 160 via the r-process, these additional experimental data should help to constrain theoretical models for calculations of T1/2 and Pxn in this region.</jats:p

    Study of decay properties of Ba to Nd nuclei (A similar to 160) relevant to the formation of the r-process rare-earth peak

    Full text link
    Half-lifes (T1/2) of exotic neutron-rich isotopes of Ba, La, Ce, Pr, and Nd were measured at the RIKEN Nishina Center. The experimental setup consisted of the BigRIPS in-flight separator for ion selection identification, the Advance Implantation Detector Array (AIDA) for ions and β detection, and the BRIKEN detector for neutron counting. Using this setup, 4 new T1/2 have been measured for the first time, and 38 T1/2 have been remeasured with improved precision in several cases. These new experimental data should help to constrain theoretical models for calculations of T1/2. The status of the experimental analysis and preliminary results are provided in this contribution.</jats:p

    The β-decay of 70Kr into 70Br: Restoration of the pseudo-SU(4) symmetry

    Full text link
    The β-decay of the even-even nucleus 70Kr with Z=N+2, has been investigated at the Radioactive Ion Beam Factory (RIBF) of the RIKEN Nishina Center using the BigRIPS fragment separator, the ZeroDegree Spectrometer, the WAS3ABI implantation station and the EURICA HPGe cluster array. Fifteen γ-rays associated with the β-decay of 70Kr into 70Br have been identified for the first time, defining ten populated states below Eexc=3300 keV. The half-life of 70Kr was derived with increased precision and found to be t1/2=45.19±0.14 ms. The β-delayed proton emission probability has also been determined as εp=0.545(23)%. An increase in the β-strength to the yrast 1+ state in comparison with the heaviest Z=N+2 system studied so far (62Ge decay) is observed that may indicate increased np correlations in the T=0 channel. The β-decay strength deduced from the results is interpreted in terms of the proton-neutron quasiparticle random-phase approximation (pnQRPA) and also with a schematic model that includes isoscalar and isovector pairing in addition to quadrupole deformation. The application of this last model indicates an approximate realization of pseudo-SU(4) symmetry in this system

    Measuring the beta-decay Properties of Neutron-rich Exotic Pm, Sm, Eu, and Gd Isotopes to Constrain the Nucleosynthesis Yields in the Rare-earth Region

    Full text link
    Abstract The β-delayed neutron-emission probabilities of 28 exotic neutron-rich isotopes of Pm, Sm, Eu, and Gd were measured for the first time at RIKEN Nishina Center using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The existing β-decay half-life (T 1/2) database was significantly increased toward more neutron-rich isotopes, and uncertainties for previously measured values were decreased. The new data not only constrain the theoretical predictions of half-lives and β-delayed neutron-emission probabilities, but also allow for probing the mechanisms of formation of the high-mass wing of the rare-earth peak located at A ≈ 160 in the r-process abundance distribution through astrophysical reaction network calculations. An uncertainty quantification of the calculated abundance patterns with the new data shows a reduction of the uncertainty in the rare-earth peak region. The newly introduced variance-based sensitivity analysis method offers valuable insight into the influence of important nuclear physics inputs on the calculated abundance patterns. The analysis has identified the half-lives of 168Sm and of several gadolinium isotopes as some of the key variables among the current experimental data to understand the remaining abundance uncertainty at A = 167–172.</jats:p
    corecore