9 research outputs found

    APES: Approximate Posterior Ensemble Sampler

    Full text link
    This paper proposes a novel approach to generate samples from target distributions that are difficult to sample from using Markov Chain Monte Carlo (MCMC) methods. Traditional MCMC algorithms often face slow convergence due to the difficulty in finding proposals that suit the problem at hand. To address this issue, the paper introduces the Approximate Posterior Ensemble Sampler (APES) algorithm, which employs kernel density estimation and radial basis interpolation to create an adaptive proposal, leading to fast convergence of the chains. The APES algorithm's scalability to higher dimensions makes it a practical solution for complex problems. The proposed method generates an approximate posterior probability that closely approximates the desired distribution and is easy to sample from, resulting in smaller autocorrelation times and a higher probability of acceptance by the chain. In this work, we compare the performance of the APES algorithm with the affine invariance ensemble sampler with the stretch move in various contexts, demonstrating the efficiency of the proposed method. For instance, on the Rosenbrock function, the APES presented an autocorrelation time 140 times smaller than the affine invariance ensemble sampler. The comparison showcases the effectiveness of the APES algorithm in generating samples from challenging distributions. This paper presents a practical solution to generating samples from complex distributions while addressing the challenge of finding suitable proposals. With new cosmological surveys set to deal with many new systematics, which will require many new nuisance parameters in the models, this method offers a practical solution for the upcoming era of cosmological analyses.Comment: 15 pages, 6 figures, 7 table

    Selected Topics in Numerical Methods for Cosmology

    Full text link
    The large amount of cosmological data already available (and in the near future) makes necessary the development of efficient numerical codes. Many software products have been implemented to perform cosmological analyses considering one or few probes. The need of multi-task software is rapidly increasing, in order to combine numerous cosmological probes along with their specificity (e.g., astrophysical descriptions and systematic errors). In this work we mention some of these libraries, bringing out some challenges they will face in the few-percent error era (on the cosmological parameters). We review some concepts of the standard cosmological model, and examine some specific topics on their implementation, bringing, for example, the discussion on how some quantities are numerically defined in different codes. We also consider implementation differences between public codes, mentioning their advantages/disadvantages.Comment: 23 pages, 3 figures. Contribution to the 3rd Jos\'e Pl\'inio Baptista School on Cosmology held in 2016 in Pedra Azul, Esp\'irito Santo, Brazil. Submitted to Univers

    Cosmological constant constraints from observation-derived energy condition bounds and their application to bimetric massive gravity

    No full text
    Among the various possibilities to probe the theory behind the recent accelerated expansion of the universe, the energy conditions (ECs) are of particular interest, since it is possible to confront and constrain the many models, including different theories of gravity, with observational data. In this context, we use the ECs to probe any alternative theory whose extra term acts as a cosmological constant. For this purpose, we apply a model-independent approach to reconstruct the recent expansion of the universe. Using Type Ia supernova, baryon acoustic oscillations and cosmic-chronometer data, we perform a Markov Chain Monte Carlo analysis to put constraints on the effective cosmological constant Ω0eff. By imposing that the cosmological constant is the only component that possibly violates the ECs, we derive lower and upper bounds for its value. For instance, we obtain that 0.59<Ω0eff<0.91 and 0.40<Ω0eff<0.93 within, respectively, 1σ and 3σ confidence levels. In addition, about 30\% of the posterior distribution is incompatible with a cosmological constant, showing that this method can potentially rule it out as a mechanism for the accelerated expansion. We also study the consequence of these constraints for two particular formulations of the bimetric massive gravity. Namely, we consider the Visser's theory and the Hassan and Roses's massive gravity by choosing a background metric such that both theories mimic General Relativity with a cosmological constant. Using the Ω0eff observational bounds along with the upper bounds on the graviton mass we obtain constraints on the parameter spaces of both theorie

    Cosmological constraints from a joint analysis of cosmic microwave background and spectroscopic tracers of the large-scale structure

    No full text
    The standard model of cosmology, {\Lambda}CDM, is the simplest model that matches the current observations, but it relies on two hypothetical components, to wit, dark matter and dark energy. Future galaxy surveys and cosmic microwave background (CMB) experiments will independently shed light on these components, but a joint analysis that includes cross-correlations will be necessary to extract as much information as possible from the observations. In this paper, we carry out a multi-probe analysis based on pseudo-spectra and test it on publicly available data sets. We use CMB temperature anisotropies and CMB lensing observations from Planck as well as the spectroscopic galaxy and quasar samples of SDSS-III/BOSS, taking advantage of the large areas covered by these surveys. We build a likelihood to simultaneously analyse the auto and cross spectra of CMB lensing and tracer overdensity maps before running Monte-Carlo Markov Chains (MCMC) to assess the constraining power of the combined analysis. We then add the CMB temperature anisotropies likelihood and obtain constraints on cosmological parameters (H0, ωb, ωc, ln1010As, ns and zre) and galaxy biases. We demonstrate that the joint analysis can additionally constrain the total mass of neutrinos Σmν as well as the dark energy equation of state w at once (for a total of eight cosmological parameters), which is impossible with either of the data sets considered separately. Finally, we discuss limitations of the analysis related to, e.g., the theoretical precision of the models, particularly in the non-linear regime

    Anisotropic multiple bounce models

    No full text
    We analyze the Galileon ghost condensate implementation of a bouncing cosmological model in the presence of a non negligible anisotropic stress. We exhibit its structure, which we find to be far richer than previously thought. In particular, even restricting attention to a single set of underlying microscopic parameters, we obtain, numerically, many qualitatively different regimes: depending on the initial conditions on the scalar field leading the dynamics of the universe, the contraction phase can evolve directly towards a singularity, avoid it by bouncing once, or even bounce many times before settling into an ever-expanding phase. We clarify the behavior of the anisotropies in these various situations

    Consistent Scalar and Tensor Perturbation Power Spectra in Single Fluid Matter Bounce with Dark Energy Era

    No full text
    We investigate cosmological scenarios containing one canonical scalar field with an exponential potential in the context of bouncing models, where the bounce happens due to quantum cosmological effects. The only possible bouncing solutions in this scenario (discarding an infinitely fine tuned exception) must have one and only one dark energy phase, either occurring in the contracting era or in the expanding era. Hence,these bounce solutions are necessarily asymmetric. We calculate the spectral indexes and amplitudes of scalar and tensor perturbations numerically, considering the whole history of the model, including the bounce phase itself, without making any approximation or using any matching condition on the perturbations. As the background model is necessarily dust dominated in the far past, the usual adiabatic vacuum initial conditions can be easily imposed in this era. Hence, this is a cosmological model where the presence of dark energy behavior in the Universe does not turn problematic the usual vacuum initial conditions prescription for cosmological perturbation in bouncing models. Scalar and tensor perturbations end up being almost scale invariant, as expected. The background parameters can be adjusted, without fine tunings, to yield the observed amplitude for scalar perturbations, and also for the ratio between tensor and scalar amplitudes, r=T/S≲0.1. The amplification of scalar perturbations over tensor perturbations takes place only around the bounce, due to quantum effects, and it would not occur if General Relativity has remained valid throughout this phase. Hence, this is a bouncing model where a single field induces not only an expanding background dark energy phase, but also produces all observed features of cosmological perturbations of quantum mechanical origin at linear order
    corecore