23 research outputs found

    Direct Observations of Sigma Phase Formation in Duplex Stainless Steels using In Situ Synchrotron X-Ray Diffraction

    Get PDF
    The formation and growth of sigma phase in 2205 duplex stainless steel was observed and measured in real time using synchrotron radiation during 10 hr isothermal heat treatments at temperatures between 700 C and 850 C. Sigma formed in near-equilibrium quantities during the isothermal holds, starting from a microstructure which contained a balanced mixture of metastable ferrite and austenite. In situ synchrotron diffraction continuously monitored the transformation, and these results were compared to those predicted by thermodynamic calculations. Differences between the calculated and measured amounts of sigma, ferrite and austenite suggest that the thermodynamic calculations underpredict the sigma dissolution temperature by approximately 50 C. The data were further analyzed using a modified Johnson-Mehl-Avrami (JMA) approach to determine kinetic parameters for sigma formation over this temperature range. The initial JMA exponent, n, at low fractions of sigma was found to be approximately 7.0, however, towards the end of the transformation, n decreased to values of approximately 0.75. The change in the JMA exponent was attributed to a change in the transformation mechanism from discontinuous precipitation with increasing nucleation rate, to growth of the existing sigma phase after nucleation site saturation occurred. Because of this change in mechanism, it was not possible to determine reliable values for the activation energy and pre-exponential terms for the JMA equation. While cooling back to room temperature, the partial transformation of austenite resulted in a substantial increase in the ferrite content, but sigma retained its high temperature value to room temperature

    Modeling Microstructure and Irradiation Effects

    Full text link
    corecore