7 research outputs found
El museo como dispositivo de espectacularizaci贸n de la naturaleza
La presente investigaci贸n se desarrolla desde el pensamiento del discurso y el dispositivo propuesto por Michael Foucault, adaptado para el estudio de espacios expositivos desarrollado por Susana Herrera Lima. Se discute el concepto de espectacularizaci贸n desde el pensamiento de Guy Debord. Este estudio es una combinaci贸n de las propuestas del an谩lisis cr铆tico del discurso de Sigfried J盲ger y la teor铆a fundamentada de Strauss y Corbin y se realiz贸 con la participaci贸n de seis museos de Quintana Roo. En el trabajo se plantea al museo como un dispositivo de espectacularizaci贸n que escenifica una verdad a partir de fragmentos discursivos y omisiones que determinan lo que es la naturaleza y dictan las maneras como se relaciona la sociedad con ella. De esta forma, el museo tiene la capacidad de legitimar una versi贸n embellecida de la realidad natural que se presenta en otros medios de comunicaci贸n. A la par, es un dispositivo que puede hacer visibles los elementos que conforman el concepto de naturaleza e invisibilizar los que no la han de integrar. Los museos de Quintana Roo demostraron que en el fen贸meno de espectacularizaci贸n, el museo tiene una participaci贸n muy diversa. Algunos confirman los efectos discursivos del espect谩culo, mientras que otros confrontan la hip贸tesis. En todos los casos se acepta que la espectacularizaci贸n es una condici贸n ontog茅nica del museo, pero cuyo papel en la l贸gica estrat茅gica del discurso museogr谩fico no es homog茅nea
Smart magnetic poly(N-isopropylacrylamide) to control the release of bio-active molecules
Thermo switchable magnetic hydrogels undoubtedly have a great potential for medical applications since they can behave as smart carriers able to transport bioactive molecules to a chosen part of the body and release them on demand via magneto-thermal activation. We report on the ability to modify the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM) on demand from 32 A degrees C to LCST a parts per thousand yen37 A degrees C. This was achieved by the absorption of controlled amounts of magnetite nanoparticles on the polymer chains. We show, through the effect on cell viability, that the resulting magnetic PNIPAM is able to trap and to release bio-active molecules, such as cell growth factors. The activities of the released bio molecule are tested on human umbilical vein endothelial cells culture. We demonstrate that the LCST of the magnetic PNIPAM can be reached remotely via inductive heating with an alternating magnetic field. This approach on magnetic PNIPAM clearly supports appealing applications in safe biomedicine
Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations
Multilayered magnetic gelatin membrane scaffolds
A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 degrees C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial-magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications