4 research outputs found

    Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography

    Get PDF
    Endovenous laser ablation (EVLA) is commonly used to treat saphenous varicosities. Very high temperatures at the laser fibre tip have been reported during EVLA. We hypothesized that the laser irradiation deposits a layer of strongly absorbing carbonized blood of very high temperature on the fibre tip. We sought to prove the existence of these layers and study their properties by optical transmission, optical coherence tomography (OCT) and microscopy. We analysed 23 EVLA fibres, 8 used at 810 nm, 7 at 940 nm and 8 at 1,470 nm. We measured the transmission of these fibres in two wavelength bands (450–950 nm; 950–1,650 nm). We used 1,310 nm OCT to assess the thickness of the layers and the attenuation as a function of depth to determine the absorption coefficient. Microscopy was used to view the tip surface. All fibres showed a slightly increasing transmission with wavelength in the 450–950 nm band, and a virtually wavelength-independent transmission in the 950–1,650 nm band. OCT scans showed a thin layer deposited on all 13 fibres investigated, 6 used at 810 nm, 4 at 940 nm and 3 at 1,470 nm, some with inhomogeneities over the tip area. The average absorption coefficient of the 13 layers was 72 ± 16 mm−1. The average layer thickness estimated from the transmission and absorption measurements was 8.0 ± 2.7 µm. From the OCT data, the average maximal thickness was 26 ± 6 µm. Microscopy of three fibre tips, one for each EVLA wavelength, showed rough, cracked and sometimes seriously damaged tip surfaces. There was no clear correlation between the properties of the layers and the EVLA parameters such as wavelength, except for a positive correlation between layer thickness and total delivered energy. In conclusion, we found strong evidence that all EVLA procedures in blood filled veins deposit a heavily absorbing hot layer of carbonized blood on the fibre tip, with concomitant tip damage. This major EVLA mechanism is unlikely to have much wavelength dependence at similar delivered energies per centimetre of vein. Optical–thermal interaction between the vein wall and the transmitted laser light depends on wavelength

    Development of functional near-infrared optical coherence tomography

    Get PDF
    Optische coherentie tomografie (OCT) is een relatief nieuwe beeldvormende techniek die afbeeldingen met een hoge resolutie kan maken van weefsel tot een paar millimeter diep. OCT wordt vooral gebruikt in de oogheelkunde; andere mogelijke toepassingen in bijvoorbeeld de cardiologie worden nader onderzocht. Vitali Kodach richtte zich op de ontwikkeling van nabij-infrarode OCT-systemen die tot betere diagnostiek moeten leiden. Hij toont aan dat toename van de OCT-afbeeldingsdiepte mogelijk is door het gebruik van langere golflengtes van het licht. Ook verkreeg hij nieuwe functionele informatie over samples en weefsels uit het gedetecteerde OCT-signaal

    Wavelength swept Ti:sapphire laser

    Get PDF
    In this study, we demonstrate, for the first time to our knowledge, electronic wavelength sweeping of a continuous wave Ti:sapphire laser using an acousto-optic tunable filter (AOTF). The dependence of the laser output on the sweeping frequency and on the spectral tuning range was investigated. The lasing up to maximum scan rate 11 kHz for 10 nm tuning range and 5 W pump power was achieved. We detected and quantified asymmetry in the output for opposite scan directions. We theoretically characterized the maximum sweeping frequency for swept lasers with AOTFs and confirmed calculated results by measurement

    Optical phantoms of varying geometry based on thin building blocks with controlled optical properties \ud

    Get PDF
    Current innovations in optical imaging, measurement techniques, and data analysis algorithms express the need for reliable testing and comparison methods. We present the design and characterization of silicone elastomer-based optical phantoms. Absorption is included by adding a green dye and scattering by adding TiO2 or SiO2 particles. Optical coherence tomography measurements demonstrate a linear dependence of the attenuation coefficient with scatterer concentration in the absence of absorbers. Optical transmission spectroscopy of the nonscattering absorbing phantoms shows a linear concentration dependent absorption coefficient. Both types of samples are stable over a period of 6 months. Confocal microscopy of the samples demonstrates a homogeneous distribution of the scatterers, albeit with some clustering. Based on layers with thicknesses as small as 50 μm, we make multifaceted structures resembling flow channels, (wavy) skin-like structures, and a layered and curved phantom resembling the human retina. Finally, we demonstrate the ability to incorporate gold nanoparticles within the phantoms. In conclusion, our phantoms are easy to make, are based on affordable materials, exhibit well-defined and controllable thickness, refractive index, absorption, and scattering coefficients, are homogeneous, and allow the incorporation of novel types of nanoparticle contrast agents. We believe our phantoms fulfill many of the requirements for an “ideal” tissue phantom, and will be particularly suited for novel optical coherence tomography application
    corecore