28 research outputs found
The origin of human pathogenicity and biological interactions in Chaetothyriales
Fungi in the order Chaetothyriales are renowned for their ability to cause human infections. Nevertheless, they are not
regarded as primary pathogens, but rather as opportunists with a natural habitat in the environment. Extremotolerance is
a major trend in the order, but quite diferent from black yeasts in Capnodiales which focus on endurance, an important
additional parameter is advancing toxin management. In the ancestral ecology of rock colonization, the association with
metabolite-producing lichens is signifcant. Ant-association, dealing with pheromones and repellents, is another mainstay
in the order. The phylogenetically derived family, Herpotrichiellaceae, shows dual ecology in monoaromatic hydrocarbon
assimilation and the ability to cause disease in humans and cold-blooded vertebrates. In this study, data on ecology, phylogeny, and genomics were collected and analyzed in order to support this hypothesis on the evolutionary route of the species of
Chaetothyriales. Comparing the ribosomal tree with that of enzymes involved in toluene degradation, a signifcant expansion
of cytochromes is observed and the toluene catabolism is found to be complete in some of the Herpotrichiellaceae. This
might enhance human systemic infection. However, since most species have to be traumatically inoculated in order to cause
disease, their invasive potential is categorized as opportunism. Only in chromoblastomycosis, true pathogenicity might be
surmised. The criterion would be the possible escape of agents of vertebrate disease from the host, enabling dispersal of
adapted genotypes to subsequent generations.info:eu-repo/semantics/publishedVersio
A conceptual framework for nomenclatural stability and validity of medically important fungi: a proposed global consensus guideline for fungal name changes supported by ABP, ASM, CLSI, ECMM, ESCMID-EFISG, EUCAST-AFST, FDLC, IDSA, ISHAM, MMSA, and MSGERC
The rapid pace of name changes of medically important fungi is creating challenges for clinical laboratories and clinicians involved in patient care. We describe two sources of name change which have different drivers, at the species versus the genus level. Some suggestions are made here to reduce the number of name changes. We urge taxonomists to provide diagnostic markers of taxonomic novelties. Given the instability of phylogenetic trees due to variable taxon sampling, we advocate to maintain genera at the largest possible size. Reporting of identified species in complexes or series should where possible comprise both the name of the overarching species and that of the molecular sibling, often cryptic species. Because the use of different names for the same species will be unavoidable for many years to come, an open access online database of the names of all medically important fungi, with proper nomenclatural designation and synonymy, is essential. We further recommend that while taxonomic discovery continues, the adaptation of new name changes by clinical laboratories and clinicians be reviewed routinely by a standing committee for validation and stability over time, with reference to an open access database, wherein reasons for changes are listed in a transparent way
In vitro activity and post-drug-exposure effects of antifungal agents and other drugs in Exophiala spinifera and filamentous fungi
Contains fulltext :
19359_in__viaca.pdf (publisher's version ) (Open Access)196 p
Evaluation of the in vitro activity of amphotericin B by time-kill curve methodology against large and small capsulate C. neoformans isolates
Fil: Córdoba, Susana. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Micologia; Argentina.Fil: Afeltra, Javier. Hospital Dr. José María Ramos Mejía. Micologia. Unidad de Parasitologia; Argentina.Fil: Vitale, Roxana G. Hospital Dr. José María Ramos Mejía. Micologia. Unidad de Parasitologia; Argentina.We have evaluated and compared the activity of amphotericin B (AMB) by time-kill curve methodology against 20 clinical Cryptococcus neoformans isolates in which capsule induction in vitro was performed. Overall, large capsulated isolates were more resistant to killing by AMB over time when compared with those small capsulate ones
Potent Synergistic In Vitro Interaction between Nonantimicrobial Membrane-Active Compounds and Itraconazole against Clinical Isolates of Aspergillus fumigatus Resistant to Itraconazole
To develop new approaches for the treatment of invasive infections caused by Aspergillus fumigatus, the in vitro interactions between itraconazole (ITZ) and seven different nonantimicrobial membrane-active compounds—amiodarone (AMD), amiloride, lidocaine, lansoprazole (LAN), nifedipine (NIF), verapamil, and fluphenazine—against seven ITZ-susceptible and seven ITZ-resistant (ITZ-R) strains were evaluated by the checkerboard microdilution method based on National Committee for Clinical Laboratory Standards M-38A guidelines. The nature and the intensity of the interactions were assessed by a nonparametric approach (fractional inhibitory concentration [FIC] index model), a fully parametric response surface approach (Greco model) of the Loewe additivity no-interaction theory, and the nonparametric (Prichard model) and semiparametric response surface approaches of the Bliss independence (BI) no-interaction theory. Statistically significant synergy was found for the combination of ITZ and AMD and the combination of LAN and NIF, although with different intensities against ITZ-R strains. The FIC index values ranged from 1 to 0.02 for ITZ-AMD, 0.53 to 0.04 for ITZ-LAN, and 0.28 to 0.06 for ITZ-NIF. By use of the BI-based model, the strongest synergy was found for the combination of ITZ with AMD, followed by the combination of ITZ and NIF. The parametric models could not be fit adequately because most of the drugs alone did not show any effect and, thus, no sigmoid dose-response. In general, the combination of ITZ with calcium pump blockers displayed in vitro synergistic activity, primarily against ITZ-R strains, and warrants further investigation
In Vitro Activities of Pentamidine, Pyrimethamine, Trimethoprim, and Sulfonamides against Aspergillus Species
The susceptibilities of 70 strains of Aspergillus species were tested against seven different sulfa drugs and pentamidine by a microdilution method with RPMI 1640 and yeast nitrogen base media. Sulfamethoxazole, sulfadiazine, and pentamidine were active in vitro. The MICs obtained with RPMI 1640 were significantly higher than those with yeast nitrogen base. More studies are needed to further elucidate the action of these drugs
Method for Measuring Postantifungal Effect in Aspergillus Species
An in vitro method for determination of postantifungal effect (PAFE) in molds was developed by using three isolates each of Aspergillus fumigatus, A. flavus, A. terreus, A. nidulans, and A. ustus. MICs of amphotericin B and itraconazole were determined by using National Committee for Clinical Laboratory Standards guidelines (M38-P). The inoculum was prepared in RPMI 1640 broth buffered with MOPS (morpholinepropanesulfonic acid) at pH 7.0, and conidia were exposed to amphotericin B and itraconazole at concentrations of 4, 1, and 0.25 times the MIC, each for 4, 2, and 1 h at 37°C. The same procedure was followed for controls with drug-free medium. Following exposure, the conidia were washed three times in saline and the numbers of CFU per milliliter were determined. Exposed and control conidia were then inoculated into microtitration plates and incubated at 37°C for 48 h in a spectrophotometer reader. The optical density (OD) was measured automatically at 10-min intervals, resulting in growth curves. PAFE was quantified by comparing three arbitrary points in the control growth curve, the first increase of OD and the points when 20 and 50% of the maximal growth were reached, with the growth curve of drug-exposed conidia. Amphotericin B induced PAFE in A. fumigatus at four times the MIC after 2 and 4 h of exposure ranging from 1.83 to 6.00 h and 9.33 to 10.80 h, respectively. Significantly shorter PAFEs or lack of PAFE was observed for A. terreus, A. ustus, and A. nidulans. Itraconazole did not induce measurable PAFE in the Aspergillus isolates at any concentration or exposure time tested. Further studies are warranted to investigate the implications of PAFE in relation to clinical efficacy and dosing frequency
Differential distribution patterns of Fonsecaea agents of chromoblastomycosis, exemplified by the first case due to F. monophora from Argentina
Chromoblastomycosis is a mutilating infection of the skin and subcutaneous tissues caused by melanized fungi belonging to the order Chaetothyriales. Proven cases of the main agent, Fonsecaea pedrosoi are mainly limited to (sub)tropical, humid climates of Latin and Central America and the Caribbean. Fonsecaea monophora has a global distribution along the equator. Cases outside the (sub)tropics have thus far mostly been considered to have been imported, but here we report the first endemic case by F. monophora from Argentina. Patient was a 82-year-old rural female worker from Corrientes, a province with a dry continental climate. Keywords: Dematiaceous fungi, Chromoblastomycosis, Fonsecaea monophora, South America, Argentin