5 research outputs found
Recommended from our members
Spectroscopic confirmation of CEERS NIRCam-selected galaxies at z≃8-10
We present JWST/NIRSpec prism spectroscopy of seven galaxies selected from Cosmic Evolution Early Release Science (CEERS) survey NIRCam imaging with photometric redshifts z phot > 8. We measure emission line redshifts of z = 7.65 and 8.64 for two galaxies. For two other sources without securely detected emission lines we measure z = 9.77 − 0.29 + 0.37 and 10.01 − 0.19 + 0.14 by fitting model spectral templates to the prism data, from which we detect continuum breaks consistent with Lyα opacity from a mostly neutral intergalactic medium. The presence of strong breaks and the absence of strong emission lines give high confidence that these two galaxies have redshifts z > 9.6, but the redshift values derived from the breaks alone have large uncertainties given the low spectral resolution and relatively low S/N of the CEERS NIRSpec prism data. The two z ∼ 10 sources observed are relatively luminous (M UV 8 candidates with CEERS NIRSpec spectroscopy do not have secure redshifts, but the absence of emission lines in their spectra is consistent with redshifts z > 9.6. We find that z > 8 photometric redshifts are generally in agreement (within their uncertainties) with the spectroscopic values, but also that the photometric redshifts tend to be slightly overestimated (〈Δz〉 = 0.45 ± 0.11), suggesting that current templates do not fully describe the spectra of very-high-z sources. Overall, the spectroscopy solidifies photometric redshift evidence for a high spatial density of bright galaxies at z > 8 compared to theoretical model predictions, and further disfavors an accelerated decline in the integrated UV luminosity density at z > 8.</p
Recommended from our members
Using [Ne v]/[Ne iii] to understand the nature of extreme-ionization galaxies
Spectroscopic studies of extreme-ionization galaxies (EIGs) are critical to our understanding of exotic systems throughout cosmic time. These EIGs exhibit spectral features requiring >54.42 eV photons: the energy needed to ionize helium into He2+ fully and emit He ii recombination lines. Spectroscopic studies of EIGs can probe exotic stellar populations or accretion onto intermediate-mass black holes (∼102-105 M ⊙), which are the possibly key contributors to the reionization of the Universe. To facilitate the use of EIGs as probes of high-ionization systems, we focus on ratios constructed from several rest-frame UV/optical emission lines: [O iii] λ5008, Hβ, [Ne iii] λ3870, [O ii] λ λ3727, 3729, and [Ne v] λ3427. These lines probe the relative intensity at energies of 35.12, 13.62, 40.96, 13.62, and 97.12 eV, respectively, covering a wider range of ionization than traced by other common rest-frame UV/optical techniques. We use the ratios of these lines ([Ne v]/[Ne iii] ≡ Ne53, [O iii]/Hβ, and [Ne iii]/[O ii]), which are nearby in wavelength, mitigating the effects of dust attenuation and uncertainties in flux calibration. We make predictions from photoionization models constructed from Cloudy that use a broad range of stellar populations and black hole accretion models to explore the sensitivity of these line ratios to changes in the ionizing spectrum. We compare our models to observations from the Hubble Space Telescope and JWST of galaxies with strong high-ionization emission lines at z ∼ 0, z ∼ 2, and 5 </p
Recommended from our members
Confirmation and refutation of very luminous galaxies in the early Universe
During the first 500 million years of cosmic history, the first stars and galaxies formed, seeding the Universe with heavy elements and eventually reionizing the intergalactic medium 1–3. Observations with the James Webb Space Telescope (JWST) have uncovered a surprisingly high abundance of candidates for early star-forming galaxies, with distances (redshifts, z), estimated from multiband photometry, as large as z ≈ 16, far beyond pre-JWST limits 4–9. Although such photometric redshifts are generally robust, they can suffer from degeneracies and occasionally catastrophic errors. Spectroscopic measurements are required to validate these sources and to reliably quantify physical properties that can constrain galaxy formation models and cosmology 10. Here we present JWST spectroscopy that confirms redshifts for two very luminous galaxies with z > 11, and also demonstrates that another candidate with suggested z ≈ 16 instead has z = 4.9, with an unusual combination of nebular line emission and dust reddening that mimics the colours expected for much more distant objects. These results reinforce evidence for the early, rapid formation of remarkably luminous galaxies while also highlighting the necessity of spectroscopic verification. The large abundance of bright, early galaxies may indicate shortcomings in current galaxy formation models or deviations from physical properties (such as the stellar initial mass function) that are generally believed to hold at later times.</p
Recommended from our members
The physical conditions of emission-line galaxies at cosmic dawn from JWST/NIRSpec spectroscopy in the SMACS 0723 early release observations
We present rest-frame optical emission-line flux ratio measurements for five z > 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliable relative flux calibration of emission lines that are closely separated in wavelength, despite the uncertain absolute spectrophotometry of the current version of the reductions. Compared to z ~ 3 galaxies in the literature, the z > 5 galaxies have similar [O iii]?5008/Hß ratios, similar [O iii]?4364/H? ratios, and higher (~0.5 dex) [Ne III]?3870/[O II]?3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [Ne III]?3870/[O II]?3728, [O iii]?4364/H?, and [O iii]?5008/Hß emission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( log ( Q ) ? 8 - 9 , units of cm s-1), low metallicity (Z/Z ? ? 0.2), and very high pressure ( log ( P / k ) ? 8 - 9 , units of cm-3). The combination of [O iii]?4364/H? and [O iii]?(4960 + 5008)/Hß line ratios indicate very high electron temperatures of 4.1 < log ( T e / K ) < 4.4 , further implying metallicities of Z/Z ? ? 0.2 with the application of low-redshift calibrations for “T e -based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies at cosmic dawn
Recommended from our members
A Census from JWST of Extreme Emission-line Galaxies Spanning the Epoch of Reionization in CEERS
We present a sample of 1165 extreme emission-line galaxies (EELGs) at 4 5000 Å. JWST/NIRSpec spectroscopic observations of a subset (34) of the photometrically selected EELGs validate our selection method: All spectroscopically observed EELGs confirm our photometric identification of extreme emission, including some cases where the spectral-energy-distribution-derived photometric redshifts are incorrect. We find that the medium-band F410M filter in CEERS is particularly efficient at identifying EELGs, both in terms of including emission lines in the filter and in correctly identifying the continuum between Hβ + [O iii] and Hα in the neighboring broadband filters. We present examples of EELGs that could be incorrectly classified as ultrahigh redshift (z > 12) as a result of extreme Hβ + [O iii] emission blended across the reddest photometric filters. We compare the EELGs to the broader (subextreme) galaxy population in the same redshift range and find that they are consistent with being the bluer, high-EW tail of a broader population of emission-line galaxies. The highest-EW EELGs tend to have more compact emission-line sizes than continuum sizes, suggesting that active galactic nuclei are responsible for at least some of the most extreme EELGs. The photometrically inferred emission-line ratios are consistent with interstellar medium conditions with high ionization and moderately low metallicity, consistent with previous spectroscopic studies.</p