22 research outputs found

    Sinteza i farmakološko ispitivanje novih 4-(3-etilfenil)-1-supstituiranih 4H-[1,2,4]triazolo[4,3-a]kinazolin-5-ona kao nove klase H1-antihistaminika

    Get PDF
    A series of novel 4-(3-ethylphenyl)-1-substituted-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-ones (4a-j) were synthesized by the cyclization of 3-(3-ethylphenyl)-2-hydrazino-3H-quinazolin-4-one (3) with various one-carbon donors. The starting material, compound 3, was synthesized from 3-ethyl aniline by a new innovative route with improved yield. When tested for their in vivo H1-antihistaminic activity on conscious guinea pigs, all test compounds protected the animals from histamine induced bronchospasm significantly. Compound 4-(3-ethylphenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-one (4b) emerged as the most active compound of the series and it is more potent (74.6 % protection) compared to the reference standard chlorpheniramine maleate (71 % protection). Compound 4b shows negligible sedation (10 %) compared to chlorpheniramine maleate (30 %). Therefore compound 4b can serve as the leading compound for further development of a new class of H1-antihistamines.Ciklizacijom 3-(3-etilfenil)-2-hidrazino-3H-kinazolin-4-ona (3) s različitim donorima jednog C atoma sintetizirana je serija novih 4-(3-etilfenil)-1-supstituiranih 4H-[1,2,4]triazolo[4,3-a]kinazolin-5-ona (4a-j). Početni spoj 3 pripravljen je iz 3-etil anilina na novi, inovativni način, s poboljšanim iskorištenjem. U testovima in vivo na zamorcima, svi testirani spojevi pokazali su značajno zaštitno djelovanje protiv bronhospazma induciranog histaminom. Spoj 4-(3-etilfenil)-1-metil-4H-[1,2,4]triazolo[4,3-a]kinazolin-5-on (4b) najaktivniji je među testiranim spojevima (zaštita 74.6 %) i jači od referentnog standarda klorfeniramin maleata (zaštita 71 %). Spoj 4b pokazuje zanemarivu sedaciju (10 %) u usporedbi s klorfeniramin maleatom (30 %). Stoga spoj 4b može biti vodeći spoj za daljnji razvoj nove klase H1-antihistaminika

    Sinteza i farmakološka evaluacija 3-cikloheksil-2-supstituiranih hidrazino-3H-kinazolin-4-ona kao analgetika i antiinflamatorika

    Get PDF
    A series of novel 3-cyclohexyl-2-substituted hydrazino-quinazolin-4(3H)-ones were synthesized by reacting the amino group of 3-cyclohexyl-2-hydrazino quinazolin-4(3H)-one with a variety of aldehydes and ketones. The starting material, 3-cyclohexyl-2-hydrazino quinazolin-4(3H)-one, was synthesized from cyclohexyl amine. Title compounds were investigated for analgesic, anti-inflammatory and ulcerogenic behavior. The compound 3-cyclohexyl-2-(1-methylbutylidene-hydrazino)-3H-quinazolin-4-one (4c) emerged as the most active compound of the series and is moderately more potent in its analgesic and anti-inflammatory activities compared to the reference standard diclofenac sodium. Interestingly, test compounds showed only mild ulcerogenic potential when compared to acetylsalicylic acid.Reakcijom amino skupine 3-cikloheksil-2-hidrazino kinazolin-4(3H)-ona s različitim aldehidima i ketonima sintetizirani su novi 3-cikloheksil-2-supstituirani hidrazino-kinazolin-4(3H)-oni. Početni spoj 3-cikoheksil-2-hidrazino kinazolin-4(3H)-on pripravljen je iz cikloheksilamina. Sintetizirani spojevi testirani su na analgetsko i protuupalno djelovanje te ulcerogena svojstva. Spoj 3-cikloheksil-2-(1-metilbutiliden-hidrazino)-3H-kinazolin-4-on (4c) imao je najjače analgetsko i protuupalno djelovanje, nešto jače nego referentni spoj diklofenak natrij. Osim toga, testirani spojevi imaju samo blago ulcerogeno djelovanje u usporedbi s acetilsalicilnom kiselinom

    Discovery of new naphthyridine hybrids against enoyl-ACP reductase (inhA) protein target of Mycobacterium tuberculosis: Molecular docking, molecular dynamics simulations studies

    No full text
    Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and remains a significant global public health concern, with many new cases reported annually. Despite advancements in TB treatment and control, the emergence of drug-resistant strains has presented a considerable challenge to eradication efforts. One crucial area that necessitates further research in antituberculosis is the development of effective treatments for drug-resistant strains, particularly multidrug resistance tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB), and totally drug–resistant tuberculosis (TDR-TB). The limited and often unsatisfactory treatment options available for drug-resistant strains require the exploration of novel drugs and treatment regimens to combat this escalating issue. This study focuses on designing and developing a series of new 1,8-naphthyridine derivatives for their potential antitubercular activity. The compounds were designed and evaluated through in-silico screening using Molinspiration Cheminformatics, Osiris Property Explorer, AdmetSAR, and SwissADME. The initial filtering process identified the top 16 hybrids, which were then subjected to docking using the AutoDock tool. These compounds' binding energies were higher than the standard drug isoniazid, indicating a potentially more substantial interaction with the target. Based on the promising in silico and docking results, further investigations were conducted on the top 3 compounds, namely ST03, ST09, and ST14. To assess the stability and binding energies observed during the initial docking process, molecular dynamics simulations were performed over a 100 ns period. Both the docking and simulation studies consistently demonstrated that the 1,8-naphthyridine hybrid ST09 exhibited stable and efficient binding energies, suggesting its potential as an effective antituberculosis agent

    Molecular docking and molecular dynamics simulations discover curcumin analogs as potential wound healing agents

    No full text
    Chronic non-healing wounds impose a significant economic burden on the healthcare system. Among the existing strategies in wound healing therapy, targeting specific enzymes, namely tyrosyl-tRNA synthetase, TGFBR1, IL-1β, and Pseudomonas aeruginosa MvfR, represents an important aspect of the strategy of wound healing. Our research focuses on creating new curcumin hybrids (SV01-SV20) for harnessing wound healing activities and possesses considerable therapeutic implications. The compounds were designed and evaluated through in-silico screening using Molinspiration Cheminformatics, Osiris Property Explorer, AdmetSAR, and SwissADME. The initial filtering process identified the top 19 hybrids, which were then subjected to docking using the AutoDock tool. The results of the molecular docking analysis indicate that the curcumin hybrids, specifically tyrosyl-tRNA synthetase (SV09, SV15), TGFBR1 (SV01, and SV11), IL-1β (SV07, SV08), and Pseudomonas aeruginosa MvfR (SV09, SV13), showed the most significant binding energies (-8.69, -9.01, -8.49, -8.13, -8.48, -6.14, -9.7, and -9.2 kcal/mol, respectively) among the designed compounds. The binding energies were higher than the standard curcumin, indicating a potentially more substantial interaction with the target. Extensive molecular dynamics simulations confirmed the stability of these derivatives throughout the 100 ns simulation; the ligand-protein complexes maintained structural stability. The designed compounds demonstrated favorable pharmacokinetic properties, drug-likeness scores, bioactivity assessments, adherence to Lipinski's rule of five, and low toxicity risks. Overall, results consistently demonstrated that SV01, SV07, SV08, SV09, SV11, SV13, and SV15 compounds hold significant potential as effective agents in treating chronic wounds

    Synthesis and antimicrobial activities of 1-(3-benzyl-4-oxo-3H-quinazolin-2-yl)-4-(substituted)thiosemicarbazide derivatives

    No full text
    A series of 1-(3-benzyl-4-oxo-3H-quinazolin-2-yl)-4-(substituted) thiosemicarbazides (AS1-AS10) were obtained by the reaction of 2-hydrazino- 3-benzyl quinazolin-4(3H)-one (6) with different dithiocarbamic acid methyl ester derivatives. The key intermediate 3-benzyl-2-thioxo-2,3-dihydro-1Hquinazolin-4-one (4) was obtained by reacting benzyl amine (1) with carbon disulphide and sodium hydroxide in dimethyl sulphoxide to give sodium dithiocarbamate, which was methylated with dimethyl sulfate to yield the dithiocarbamic acid methyl ester (2) and condensed with methyl anthranilate (3) in ethanol yielded the desired compound (4) via the thiourea intermediate. The SH group of compound (4) was methylated for the favorable nucleophilic displacement reaction with hydrazine hydrate, which afford 2-hydrazino-3- benzyl-3H-quinazolin-4-one (6). The IR, 1H, and 13C NMR spectrum of these compounds showed the presence of peaks due to thiosemicarbazides, carbonyl (C=O), NH and aryl groups. The quinazolin-4-one moiety molecular ion peaks (m/z 144) were observed all the mass spectrum of compounds (AS1-AS10). Elemental (C, H, N) analysis satisfactorily confirmed purity of the synthesized compounds and elemental composition. All synthesized compounds were also screened for their antimicrobial activity against selective gram positive and gram negative by agar dilution method. In the present study compounds AS8 and AS9 were emerged as the most active compounds of the series

    Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management

    No full text
    Infections are the primary cause of death from burns and diabetic wounds. The clinical difficulty of treating wound infections with conventional antibiotics has progressively increased and reached a critical level, necessitating a paradigm change for enhanced chronic wound care. The most prevalent bacterium linked with these infections is Staphylococcus aureus, and the advent of community-associated methicillin-resistant Staphylococcus aureus has posed a substantial therapeutic challenge. Most existing wound dressings are ineffective and suffer from constraints such as insufficient antibacterial activity, toxicity, failure to supply enough moisture to the wound, and poor mechanical performance. Using ineffective wound dressings might prolong the healing process of a wound. To meet this requirement, nanoscale scaffolds with their desirable qualities, which include the potential to distribute bioactive agents, a large surface area, enhanced mechanical capabilities, the ability to imitate the extracellular matrix (ECM), and high porosity, have attracted considerable interest. The incorporation of nanoparticles into nanofiber scaffolds constitutes a novel approach to “nanoparticle dressing” that has acquired significant popularity for wound healing. Due to their remarkable antibacterial capabilities, silver nanoparticles are attractive materials for wound healing. This review focuses on the therapeutic applications of nanofiber wound dressings containing Ag-NPs and their potential to revolutionize wound healing

    Emerging Trends in Curcumin Embedded Electrospun Nanofibers for Impaired Diabetic Wound Healing

    No full text
    Chronic wounds impose a significant burden on individuals and healthcare systems all over the world. Through clinical and preclinical investigations, inflammation and oxidative damage have been established as the primary causes of chronic wounds. These skin sores are easily exposed to microorganisms, which in turn cause inflammation and hinder the healing process. Additionally, microorganisms may cause an infection that prevents collagen production and reepithelialization. Curcumin’s antioxidant, anti-inflammatory, and anti-infectious characteristics, among others, have been identified as useful for diabetic wound healing management. However, curcumin has a few disadvantages, such as limited bioavailability, pH-dependent instability, water insolubility, slow cell absorption, and fast intracellular metabolism. These constraints necessitates the development of a suitable transporter to improve curcumin’s stability, bioavailability, therapeutic efficacy, and solubility. In recent years, Electrospun nanofiber mats have been an excellent choice for drug delivery because of their numerous advantages and inherent properties. Electrospun nanofibers have shown considerable promise as wound dressing materials. This review highlights the potential properties and recent advancements in using curcumin-loaded nanofibers for diabetic wound healing
    corecore