21 research outputs found
Jekyll or Hyde: does Matrigel provide a more or less physiological environment in mammary repopulating assays?
In vivo transplantation is the current 'gold-standard' assay for evaluating mammary stem cell (MaSC) function. Matrigel, a reconstituted extracellular matrix derived from a mouse sarcoma line, is increasingly being utilized for mammary repopulating assays, although original studies were carried out in its absence. This matrix has also been shown to enhance tumor-initiating capacity. Whilst Matrigel increases the rate of engraftment by MaSCs, it also appears to promote progenitor activity that is distinct from bona fide stem cell activity. This caveat should be considered when interpreting mammary reconstitution assays that incorporate Matrigel, particularly when transplanting high cell numbers
Patient-derived xenograft models of breast cancer and their predictive power
Despite advances in the treatment of patients with early and metastatic breast cancer, mortality remains high due to intrinsic or acquired resistance to therapy. Increased understanding of the genomic landscape through massively parallel sequencing has revealed somatic mutations common to specific subtypes of breast cancer, provided new prognostic and predictive markers, and highlighted potential therapeutic targets. Evaluating new targets using established cell lines is limited by the inexact correlation between responsiveness observed in cell lines versus that elicited in the patient. Patient-derived xenografts (PDXs) generated from fresh tumor specimens recapitulate the diversity of breast cancer and reflect histopathology, tumor behavior, and the metastatic properties of the original tumor. The high degree of genomic preservation evident across primary tumors and their matching PDXs over serial passaging validate them as important preclinical tools. Indeed, there is accumulating evidence that PDXs can recapitulate treatment responses of the parental tumor. The finding that tumor engraftment is an independent and poor prognostic indicator of patient outcome represents the first step towards personalized medicine. Here we review the utility of breast cancer PDX models to study the clonal evolution of tumors and to evaluate novel therapies and drug resistance
The complexities and caveats of lineage tracing in the mammary gland
Lineage tracing is increasingly being utilised to probe different cell types that exist within the mammary gland. Whilst this technique is powerful for tracking cells in vivo and dissecting the roles of different cellular subsets in development, homeostasis and oncogenesis, there are important caveats associated with lineage tracing strategies. Here we highlight key parameters of particular relevance for the mammary gland. These include tissue preparation for whole-mount imaging, whereby the inclusion of enzymatic digestion can drastically alter tissue architecture and cell morphology, and therefore should be avoided. Other factors include the scoring of clones in three dimensions versus two dimensions, the timing of induction, and the marked variability in labelling efficiency that is evident not only between different mouse models harbouring a similar gene promoter but also within a given strain and even within a single mammary gland. Thus, it becomes crucial to visualise extensive areas of ductal tissue and to consider the intricacies of the methodology for lineage tracing studies on normal mammary development and on potential 'cells of origin' of cancer
Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling
The mammary epithelium comprises two primary cellular lineages, but the degree of heterogeneity within these compartments and their lineage relationships during development remain an open question. Here we report single-cell RNA profiling of mouse mammary epithelial cells spanning four developmental stages in the post-natal gland. Notably, the epithelium undergoes a large-scale shift in gene expression from a relatively homogeneous basal-like program in pre-puberty to distinct lineage-restricted programs in puberty. Interrogation of single-cell transcriptomes reveals different levels of diversity within the luminal and basal compartments, and identifies an early progenitor subset marked by CD55. Moreover, we uncover a luminal transit population and a rare mixed-lineage cluster amongst basal cells in the adult mammary gland. Together these findings point to a developmental hierarchy in which a basal-like gene expression program prevails in the early post-natal gland prior to the specification of distinct lineage signatures, and the presence of cellular intermediates that may serve as transit or lineage-primed cells
Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer
Primary triple negative breast cancers (TNBC) are prone to dissemination but sub-clonal relationships between tumors and resulting metastases are poorly understood. Here we use cellular barcoding of two treatment-naïve TNBC patient-derived xenografts (PDXs) to track the spatio-temporal fate of thousands of barcoded clones in primary tumors, and their metastases. Tumor resection had a major impact on reducing clonal diversity in secondary sites, indicating that most disseminated tumor cells lacked the capacity to 'seed', hence originated from 'shedders' that did not persist. The few clones that continued to grow after resection i.e. 'seeders', did not correlate in frequency with their parental clones in primary tumors. Cisplatin treatment of one BRCA1-mutated PDX model to non-palpable levels had a surprisingly minor impact on clonal diversity in the relapsed tumor yet purged 50% of distal clones. Therefore, clonal features of shedding, seeding and drug resistance are important factors to consider for the design of therapeutic strategies
Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer
BRCA1-mutated breast cancer is primarily driven by DNA copy-number alterations (CNAs) containing large numbers of candidate driver genes. Validation of these candidates requires novel approaches for high-throughput in vivo perturbation of gene function. Here we develop genetically engineered mouse models (GEMMs) of BRCA1-deficient breast cancer that permit rapid introduction of putative drivers by either retargeting of GEMM-derived embryonic stem cells, lentivirus-mediated somatic overexpression or in situ CRISPR/Cas9-mediated gene disruption. We use these approaches to validate Myc, Met, Pten and Rb1 as bona fide drivers in BRCA1-associated mammary tumorigenesis. Iterative mouse modeling and comparative oncogenomics analysis show that MYC-overexpression strongly reshapes the CNA landscape of BRCA1-deficient mammary tumors and identify MCL1 as a collaborating driver in these tumors. Moreover, MCL1 inhibition potentiates the in vivo efficacy of PARP inhibition (PARPi), underscoring the therapeutic potential of this combination for treatment of BRCA1-mutated cancer patients with poor response to PARPi monotherapy