291 research outputs found

    Identifying capacitive and inductive loss in lumped element superconducting hybrid titanium nitride/aluminum resonators

    Full text link
    We present a method to systematically locate and extract capacitive and inductive losses in superconducting resonators at microwave frequencies by use of mixed-material, lumped element devices. In these devices, ultra-low loss titanium nitride was progressively replaced with aluminum in the inter-digitated capacitor and meandered inductor elements. By measuring the power dependent loss at 50 mK as the Al-TiN fraction in each element is increased, we find that at low electric field, i.e. in the single photon limit, the loss is two level system in nature and is correlated with the amount of Al capacitance rather than the Al inductance. In the high electric field limit, the remaining loss is linearly related to the product of the Al area times its inductance and is likely due to quasiparticles generated by stray radiation. At elevated temperature, additional loss is correlated with the amount of Al in the inductance, with a power independent TiN-Al interface loss term that exponentially decreases as the temperature is reduced. The TiN-Al interface loss is vanishingly small at the 50 mK base temperature.Comment: 10 pages, 5 figure

    Ownership and attitudes towards technology use in physiotherapy students from seven countries

    Get PDF
    PURPOSE: To assess differences in prerequisites to blended learning such as technology use and Internet access in an international sample of physiotherapy students from Bangladesh, Belgium, Brazil, Luxembourg, Sudan, Switzerland and South Africa. RESULTS: Students' digital technology experiences were generally low. They primarily used a smartphone and a laptop to connect to the Internet. However, there was a significant difference between institutions in owning a laptop and access to Internet. Most students preferred learning in environments that included some online components but had never used Twitter or written a blog post and wanted less social media in their learning environments. CONCLUSION: Physiotherapy students would prefer an increase in the use of digital tools in their learning. However, differences in technology use and access highlight the challenges inherent to offering international online courses. Therefore decisions around online and blended course design in health professions education must be made with caution.Michael Rowe receives funding from the South African National Research Foundation

    Characterization and In-situ Monitoring of Sub-stoichiometric Adjustable Tc Titanium Nitride Growth

    Get PDF
    The structural and electrical properties of Ti-N films deposited by reactive sputtering depend on their growth parameters, in particular the Ar:N2 gas ratio. We show that the nitrogen percentage changes the crystallographic phase of the film progressively from pure \alpha-Ti, through an \alpha-Ti phase with interstitial nitrogen, to stoichiometric Ti2N, and through a substoichiometric TiNX to stoichiometric TiN. These changes also affect the superconducting transition temperature, Tc, allowing, the superconducting properties to be tailored for specific applications. After decreasing from a Tc of 0.4 K for pure Ti down to below 50 mK at the Ti2N point, the Tc then increases rapidly up to nearly 5 K over a narrow range of nitrogen incorporation. This very sharp increase of Tc makes it difficult to control the properties of the film from wafer-to-wafer as well as across a given wafer to within acceptable margins for device fabrication. Here we show that the nitrogen composition and hence the superconductive properties are related to, and can be determined by, spectroscopic ellipsometry. Therefore, this technique may be used for process control and wafer screening prior to investing time in processing devices

    Proximity-Coupled Ti/TiN Multilayers for use in Kinetic Inductance Detectors

    Get PDF
    We apply the superconducting proximity effect in TiN/Ti multi-layer films to tune the critical temperature, Tc, to within 10 mK with high uniformity (less than 15 mK spread) across a 75 mm wafer. Reproducible Tc's are obtained from 0.8 - 2.5 K. These films had high resistivities, > 100 uOhm-cm and internal quality factors for resonators in the GHz range on the order of 100k and higher. Both trilayers of TiN/Ti/TiN and thicker superlattice films were prepared, demonstrating a highly controlled process for films over a wide thickness range. Detectors were fabricated and showed single photon resolution at 1550 nm. The high uniformity and controllability coupled with the high quality factor, kinetic inductance, and inertness of TiN make these films ideal for use in frequency multiplexed kinetic inductance detectors and other potential applications such as nanowire detectors, transition edge sensors and associated quantum information applications

    Etch Induced Microwave Losses in Titanium Nitride Superconducting Resonators

    Full text link
    We have investigated the correlation between the microwave loss and patterning method for coplanar waveguide titanium nitride resonators fabricated on Si wafers. Three different methods were investigated: fluorine- and chlorine-based reactive ion etches and an argon-ion mill. At high microwave probe powers the reactive etched resonators showed low internal loss, whereas the ion-milled samples showed dramatically higher loss. At single-photon powers we found that the fluorine-etched resonators exhibited substantially lower loss than the chlorine-etched ones. We interpret the results by use of numerically calculated filling factors and find that the silicon surface exhibits a higher loss when chlorine-etched than when fluorine-etched. We also find from microscopy that re-deposition of silicon onto the photoresist and side walls is the probable cause for the high loss observed for the ion-milled resonator

    Coherence in a transmon qubit with epitaxial tunnel junctions

    Full text link
    We developed transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T1 is .72-.86mu sec and the ensemble dephasing time T2 is slightly larger than T1. The dephasing time T2 (1.36mu sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements
    • …
    corecore