8,841 research outputs found
Tolman wormholes violate the strong energy condition
For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define
the bounce in terms of a three-dimensional edgeless achronal spacelike
hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a
"flare-out" condition.) This enables us to severely constrain the geometry of
spacetime at and near the bounce and to derive general theorems regarding
violations of the energy conditions--theorems that do not involve geodesic
averaging but nevertheless apply to situations much more general than the
highly symmetric FRW-based subclass of Tolman wormholes. [For example: even
under the mildest of hypotheses, the strong energy condition (SEC) must be
violated.] Alternatively, one can dispense with the minimal volume condition
and define a generic bounce entirely in terms of the motion of test particles
(future-pointing timelike geodesics), by looking at the expansion of their
timelike geodesic congruences. One re-confirms that the SEC must be violated at
or near the bounce. In contrast, it is easy to arrange for all the other
standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.
Wormhole Cosmology and the Horizon Problem
We construct an explicit class of dynamic lorentzian wormholes connecting
Friedmann-Robertson-Walker (FRW) spacetimes. These wormholes can allow two-way
transmission of signals between spatially separated regions of spacetime and
could permit such regions to come into thermal contact. The cosmology of a
network of early Universe wormholes is discussed.Comment: 13 pages, in RevTe
Energy conditions in f(R) gravity and Brans-Dicke theories
The equivalence between f(R) gravity and scalar-tensor theories is invoked to
study the null, strong, weak and dominant energy conditions in Brans-Dicke
theory. We consider the validity of the energy conditions in Brans-Dicke theory
by invoking the energy conditions derived from a generic f(R) theory. The
parameters involved are shown to be consistent with an accelerated expanding
universe.Comment: 9 pages, 1 figure, to appear in IJMP
Riemannian geometry of irrotational vortex acoustics
We consider acoustic propagation in an irrotational vortex, using the
technical machinery of differential geometry to investigate the ``acoustic
geometry'' that is probed by the sound waves. The acoustic space-time curvature
of a constant circulation hydrodynamical vortex leads to deflection of phonons
at appreciable distances from the vortex core. The scattering angle for phonon
rays is shown to be quadratic in the small quantity , where
is the vortex circulation, the speed of sound, and the impact
parameter.Comment: 4 pages, 2 figures, RevTex4. Discussion of focal length added; to
appear in Physical Review Letter
The Hubble series: Convergence properties and redshift variables
In cosmography, cosmokinetics, and cosmology it is quite common to encounter
physical quantities expanded as a Taylor series in the cosmological redshift z.
Perhaps the most well-known exemplar of this phenomenon is the Hubble relation
between distance and redshift. However, we now have considerable high-z data
available, for instance we have supernova data at least back to redshift
z=1.75. This opens up the theoretical question as to whether or not the Hubble
series (or more generally any series expansion based on the z-redshift)
actually converges for large redshift? Based on a combination of mathematical
and physical reasoning, we argue that the radius of convergence of any series
expansion in z is less than or equal to 1, and that z-based expansions must
break down for z>1, corresponding to a universe less than half its current
size.
Furthermore, we shall argue on theoretical grounds for the utility of an
improved parameterization y=z/(1+z). In terms of the y-redshift we again argue
that the radius of convergence of any series expansion in y is less than or
equal to 1, so that y-based expansions are likely to be good all the way back
to the big bang y=1, but that y-based expansions must break down for y<-1, now
corresponding to a universe more than twice its current size.Comment: 15 pages, 2 figures, accepted for publication in Classical and
Quantum Gravit
Is Quantum Spacetime Foam Unstable?
A very simple wormhole geometry is considered as a model of a mode of
topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of
the hole reduces to quantum mechanics of one variable, throat radius, and
admits a WKB analysis. The hole is quantum-mechanically unstable: It has no
bound states. Wormhole wave functions must eventually leak to large radii. This
suggests that stability considerations along these lines may place strong
constraints on the nature and even the existence of spacetime foam.Comment: 15 page
van Vleck determinants: traversable wormhole spacetimes
Calculating the van Vleck determinant in traversable wormhole spacetimes is
an important ingredient in understanding the physical basis behind Hawking's
chronology protection conjecture. This paper presents extensive computations of
this object --- at least in the short--throat flat--space approximation. An
important technical trick is to use an extension of the usual junction
condition formalism to probe the full Riemann tensor associated with a thin
shell of matter. Implications with regard to Hawking's chronology protection
conjecture are discussed. Indeed, any attempt to transform a single isolated
wormhole into a time machine results in large vacuum polarization effects
sufficient to disrupt the internal structure of the wormhole before the onset
of Planck scale physics, and before the onset of time travel. On the other
hand, it is possible to set up a putative time machine built out of two or more
wormholes, each of which taken in isolation is not itself a time machine. Such
``Roman configurations'' are much more subtle to analyse. For some particularly
bizarre configurations (not traversable by humans) the vacuum polarization
effects can be arranged to be arbitrarily small at the onset of Planck scale
physics. This indicates that the disruption scale has been pushed down into the
Planck slop. Ultimately, for these configurations, questions regarding the
truth or falsity of Hawking's chronology protection can only be addressed by
entering the uncharted wastelands of full fledged quantum gravity.Comment: 42 pages, ReV_TeX 3.
Triumphalism in the Gospels
While the words ‘triumph', ‘triumphal' and ‘triumphant' are words with a long history, the expression ‘triumphalism' is a modern invention. It seems to have started its career when first Bishop de Smedt of Belgium and later other speakers used it in their speeches in the early sessions of the Second Vatican Council. Through the innumerable articles and books about the Council it became widely known and became a current expression in the terminology of writers on religious themes. The speed and extent of its success showed that it pointed to the existence of an acute problem in the life of the churches. This problem was clearly stated in a contribution to the council's debate on the nature of the Church by Bishop Laszlo of Eisenstad
Cosmodynamics: Energy conditions, Hubble bounds, density bounds, time and distance bounds
We refine and extend a programme initiated by one of the current authors
[Science 276 (1997) 88; Phys. Rev. D56 (1997) 7578] advocating the use of the
classical energy conditions of general relativity in a cosmological setting to
place very general bounds on various cosmological parameters. We show how the
energy conditions can be used to bound the Hubble parameter H(z), Omega
parameter Omega(z), density rho(z), distance d(z), and lookback time T(z) as
(relatively) simple functions of the redshift z, present-epoch Hubble parameter
H_0, and present-epoch Omega parameter Omega_0. We compare these results with
related observations in the literature, and confront the bounds with the recent
supernova data.Comment: 21 pages, 2 figure
Signature change events: A challenge for quantum gravity?
Within the framework of either Euclidian (functional-integral) quantum
gravity or canonical general relativity the signature of the manifold is a
priori unconstrained. Furthermore, recent developments in the emergent
spacetime programme have led to a physically feasible implementation of
signature change events. This suggests that it is time to revisit the sometimes
controversial topic of signature change in general relativity. Specifically, we
shall focus on the behaviour of a quantum field subjected to a manifold
containing regions of different signature. We emphasise that, regardless of the
underlying classical theory, there are severe problems associated with any
quantum field theory residing on a signature-changing background. (Such as the
production of what is naively an infinite number of particles, with an infinite
energy density.) From the viewpoint of quantum gravity phenomenology, we
discuss possible consequences of an effective Lorentz symmetry breaking scale.
To more fully understand the physics of quantum fields exposed to finite
regions of Euclidean-signature (Riemannian) geometry, we show its similarities
with the quantum barrier penetration problem, and the super-Hubble horizon
modes encountered in cosmology. Finally we raise the question as to whether
signature change transitions could be fully understood and dynamically
generated within (modified) classical general relativity, or whether they
require the knowledge of a full theory of quantum gravity.Comment: 33 pages. 4 figures; V2: 3 references added, no physics changes; V3:
now 24 pages - significantly shortened - argument simplified and more focused
- no physics changes - this version accepted for publication in Classical and
Quantum Gravit
- …