7,425 research outputs found

    Bound Modes in Dielectric Microcavities

    Get PDF
    We demonstrate how exactly bound cavity modes can be realized in dielectric structures other than 3d photonic crystals. For a microcavity consisting of crossed anisotropic layers, we derive the cavity resonance frequencies, and spontaneous emission rates. For a dielectric structure with dissipative loss and central layer with gain, the beta factor of direct spontaneous emission into a cavity mode and the laser threshold is calculated.Comment: 5 pages, 3 figure

    The quasi-classical model of the spherical configuration in general relativity

    Get PDF
    We consider the quasi-classical model of the spin-free configuration on the basis of the self-gravitating spherical dust shell in General Relativity. For determination of the energy spectrum of the stationary states on the basis of quasi-classical quantization rules it is required to carry out some regularization of the system. It is realized by an embedding of the initial system in the extended system with rotation. Then, the stationary states of the spherical shells are S-states of the system with the intrinsic momentum. The quasi-classical treatment of a stability of the configuration is associated with the Langer modification of a square of the quantum mechanical intrinsic momentum. It gives value of critical bare mass of the shell determining threshold of stability. For the shell with the bare mass smaller or equal to the Planck's mass, the energy spectra of bound states are found. We obtain the expression for tunneling probability of the shell and construct the quasi-classical model of the pair creation and annihilation of the shells.Comment: 22 pages, sprocl.sty, 3 figure

    Cosmological milestones and energy conditions

    Full text link
    Until recently, the physically relevant singularities occurring in FRW cosmologies had traditionally been thought to be limited to the "big bang", and possibly a "big crunch". However, over the last few years, the zoo of cosmological singularities considered in the literature has become considerably more extensive, with "big rips" and "sudden singularities" added to the mix, as well as renewed interest in non-singular cosmological events such as "bounces" and "turnarounds". In this talk, we present an extensive catalogue of such cosmological milestones, both at the kinematical and dynamical level. First, using generalized power series, purely kinematical definitions of these cosmological events are provided in terms of the behaviour of the scale factor a(t). The notion of a "scale-factor singularity" is defined, and its relation to curvature singularities (polynomial and differential) is explored. Second, dynamical information is extracted by using the Friedmann equations (without assuming even the existence of any equation of state) to place constraints on whether or not the classical energy conditions are satisfied at the cosmological milestones. Since the classification is extremely general, and modulo certain technical assumptions complete, the corresponding results are to a high degree model-independent.Comment: 8 pages, 1 table, conference proceedings for NEB XII conference in Nafplio, Greec

    Dielectric structures with bound modes for microcavity lasers

    Get PDF
    Cavity modes of dielectric microspheres and vertical cavity surface emitting lasers, in spite of their high Q, are never exactly bound, but have a finite width due to leakage at the borders. We propose types of microstructures that sustain three-dimensionally bound modes of the radiation field when dissipation is neglected. Unlike photonic crystals, the photonic systems that we consider here rely on periodicity in only one or two dimensions. In particular, we discuss a cavity composed of two crossed vertical layers combined with a periodic structure of horizontal layers. The layers have an anisotropic dielectric tensor, which could be obtained by making air holes in the vertical and horizontal directions within isotropic material. We calculate cavity resonance frequencies and spontaneous emission rates. The simplicity of this laser geometry allows an analytical study of light propagation and amplification in three dimensions

    New Features of Extended Wormhole Solutions in the Scalar Field Gravity Theories

    Full text link
    The present paper reports interesting new features that wormhole solutions in the scalar field gravity theory have. To demonstrate these, we obtain, by using a slightly modified form of the Matos-Nunez algorithm, an extended class of asymptotically flat wormhole solutions belonging to Einstein minimally coupled scalar field theory. Generally, solutions in these theories do not represent traversable wormholes due to the occurrence of curvature singularities. However, the Ellis I solution of the Einstein minimally coupled theory, when Wick rotated, yields Ellis class III solution, the latter representing a singularity-free traversable wormhole. We see that Ellis I and III are not essentially independent solutions. The Wick rotated seed solutions, extended by the algorithm, contain two new parameters a and \delta;. The effect of the parameter a on the geodesic motion of test particles reveals some remarkable features. By arguing for Sagnac effect in the extended Wick rotated solution, we find that the parameter a can indeed be interpreted as a rotation parameter of the wormhole. The analyses reported here have wider applicability in that they can very well be adopted in other theories, including in the string theory.Comment: 19 page

    Entangled photons from small quantum dots

    Get PDF
    We discuss level schemes of small quantum-dot turnstiles and their applicability in the production of entanglement in two-photon emission. Due to the large energy splitting of the single-electron levels, only one single-electron level and one single-hole level can be made resonant with the levels in the conduction band and valence band. This results in a model with nine distinct levels, which are split by the Coulomb interactions. We show that the optical selection rules are different for flat and tall cylindrically symmetric dots, and how this affects the quality of the entanglement generated in the decay of the biexciton state. The effect of charge-carrier tunneling and of a resonant cavity is included in the model

    Wormholes as Black Hole Foils

    Full text link
    We study to what extent wormholes can mimic the observational features of black holes. It is surprisingly found that many features that could be thought of as ``characteristic'' of a black hole (endowed with an event horizon) can be closely mimicked by a globally static wormhole, having no event horizon. This is the case for: the apparently irreversible accretion of matter down a hole, no-hair properties, quasi-normal-mode ringing, and even the dissipative properties of black hole horizons, such as a finite surface resistivity equal to 377 Ohms. The only way to distinguish the two geometries on an observationally reasonable time scale would be through the detection of Hawking's radiation, which is, however, too weak to be of practical relevance for astrophysical black holes. We point out the existence of an interesting spectrum of quantum microstates trapped in the throat of a wormhole which could be relevant for storing the information ``lost'' during a gravitational collapse.Comment: 13 pages, no figures, Late

    Muon spin rotation study of the topological superconductor SrxBi2Se3

    Get PDF
    We report transverse-field (TF) muon spin rotation experiments on single crystals of the topological superconductor Srx_xBi2_2Se3_3 with nominal concentrations x=0.15x=0.15 and 0.180.18 (Tc3T_c \sim 3 K). The TF spectra (B=10B= 10 mT), measured after cooling to below TcT_c in field, did not show any additional damping of the muon precession signal due to the flux line lattice within the experimental uncertainty. This puts a lower bound on the magnetic penetration depth λ2.3 μ\lambda \geq 2.3 ~\mum. However, when we induce disorder in the vortex lattice by changing the magnetic field below TcT_c a sizeable damping rate is obtained for T0T \rightarrow 0. The data provide microscopic evidence for a superconducting volume fraction of 70 %\sim 70~ \% in the x=0.18x=0.18 crystal and thus bulk superconductivity.Comment: 6 pages, includes 4 figure

    Cosmodynamics: Energy conditions, Hubble bounds, density bounds, time and distance bounds

    Full text link
    We refine and extend a programme initiated by one of the current authors [Science 276 (1997) 88; Phys. Rev. D56 (1997) 7578] advocating the use of the classical energy conditions of general relativity in a cosmological setting to place very general bounds on various cosmological parameters. We show how the energy conditions can be used to bound the Hubble parameter H(z), Omega parameter Omega(z), density rho(z), distance d(z), and lookback time T(z) as (relatively) simple functions of the redshift z, present-epoch Hubble parameter H_0, and present-epoch Omega parameter Omega_0. We compare these results with related observations in the literature, and confront the bounds with the recent supernova data.Comment: 21 pages, 2 figure

    On the variational principle for dust shells in General Relativity

    Get PDF
    The variational principle for a thin dust shell in General Relativity is constructed. The principle is compatible with the boundary-value problem of the corresponding Euler-Lagrange equations, and leads to ``natural boundary conditions'' on the shell. These conditions and the gravitational field equations which follow from an initial variational principle, are used for elimination of the gravitational degrees of freedom. The transformation of the variational formula for spherically-symmetric systems leads to two natural variants of the effective action. One of these variants describes the shell from a stationary interior observer's point of view, another from the exterior one. The conditions of isometry of the exterior and interior faces of the shell lead to the momentum and Hamiltonian constraints. The canonical equivalence of the mentioned systems is shown in the extended phase space. Some particular cases are considered.Comment: 25 pages, RevTeX, no figures, revised version, typos corrected, accepted for publication in Journal of Mathematical Physic
    corecore