7,756 research outputs found
A review of the Stormberg Group and Drakensberg volcanics in southern Africa
The Molteno Sandstone, Red Beds and Cave Sandstone comprising the Stormberg Group (siliciclastics) in South Africa and their correlatives, based on lithology, depositio- nal environments and tectonic cycles, in Zimbabwe, Botswana and Namibia are described. The Drakensberg Volcanics with radiometric ages of 114 My to 194 My cap the sedimen- tary sequence. A major unconformity separates the Stormberg sedimentary rocks from the lower Karoo strata.
Four Late Triassic depositional basins which were tectonically controlled are recognised. The Molteno Sandstone and Red Beds filling these basins represent braided and meandering stream deposits respectively. The Cave Sandstone covering the fluvial deposits formed as desert sand sheets reworked by westerly winds. Deposition was ended by the outpouring of the Drakensberg Volcanics
Lookback time bounds from energy conditions
In general relativity, the energy conditions are invoked to restrict general
energy-momentum tensors on physical grounds. We show that in the standard
Friedmann-Lemaitre-Robertson-Walker (FLRW) approach to cosmological modeling,
where the energy and matter components of the cosmic fluid are unknown, the
energy conditions provide model-independent bounds on the behavior of the
lookback time of cosmic sources as a function of the redshift for any value of
the spatial curvature. We also confront such bounds with a lookback time sample
which is built from the age estimates of 32 galaxies lying in the interval
and by assuming the total expanding age of the
Universe to be Gyr, as obtained from current cosmic microwave
background experiments. In agreement with previous results, we show that all
energy conditions seem to have been violated at some point of the recent past
of cosmic evolution.Comment: 7 pages, 3 figures. v2: Minor changes, published in Phys.Rev.D in the
present for
Energy Conditions and Cosmic Acceleration
In general relativity, the energy conditions are invoked to restrict general
energy-momentum tensors in different frameworks, and to derive
general results that hold in a variety of general contexts on physical grounds.
We show that in the standard Friedmann-Lemaitre-Robertson-Walker (FLRW)
approach, where the equation of state of the cosmological fluid is unknown, the
energy conditions provide model-independent bounds on the behavior of the
distance modulus of cosmic sources as a function of the redshift for any
spatial curvature. We use the most recent type Ia supernovae (SNe Ia)
observations, which include the new Hubble Space Telescope SNe Ia events, to
carry out a model-independent analysis of the energy conditions violation in
the context of the standard cosmology. We show that both the null (NEC), weak
(WEC) and dominant (DEC) conditions, which are associated with the existence of
the so-called phantom fields, seem to have been violated only recently (), whereas the condition for attractive gravity, i.e., the strong
energy condition (SEC) was firstly violated billions of years ago, at .Comment: 6 pages, 3 figures. v2: References added, misprints corrected,
published in Phys.Rev.D in the present for
Fluctuations in the electron system of a superconductor exposed to a photon flux
We report on fluctuations in the electron system, Cooper pairs and
quasiparticles, of a superconducting aluminium film. The superconductor is
exposed to pair-breaking photons (1.54 THz), which are coupled through an
antenna. The change in the complex conductivity of the superconductor upon a
change in the quasiparticle number is read out by a microwave resonator. A
large range in radiation power can be chosen by carefully filtering the
radiation from a blackbody source. We identify two regimes. At high radiation
power, fluctuations in the electron system caused by the random arrival rate of
the photons are resolved, giving a straightforward measure of the optical
efficiency (48%). At low radiation power fluctuations are dominated by excess
quasiparticles, the number of which is measured through their recombination
lifetime
Cylindrically symmetric wormholes
This paper discusses traversable wormholes that differ slightly but
significantly from those of the Morris-Thorne type under the assumption of
cylindrical symmetry. The throat is a piecewise smooth cylindrical surface
resulting in a shape function that is not differentiable at some value. It is
proposed that the regular derivative be replaced by a one-sided derivative at
this value. The resulting wormhole geometry satisfies the weak energy
condition.Comment: Supplied missing figures; 15 pages AMSTe
Reduced frequency noise in superconducting resonators
We report a reduction of the frequency noise in coplanar waveguide
superconducting resonators. The reduction of 7 dB is achieved by removing the
exposed dielectric substrate surface from the region with high electric fields
and by using NbTiN. In a model-analysis the surface of NbTiN is found to be a
negligible source of noise, experimentally supported by a comparison with NbTiN
on SiOx resonators. The reduction is additive to decreasing the noise by
widening the resonators.Comment: 4 pages, 4 figure
Magnetism in heavy-fermion U(Pt,Pd)3 studied by mSR
We report mSR experiments carried out on a series of heavy-electron
pseudobinary compounds U(Pt1-xPdx)3 (x<=0.05). For x<=0.005 the zero-field muon
depolarisation is described by the Kubo-Toyabe function. However the
temperature variation of the Kubo-Toyabe relaxation rate does not show any sign
of the small-moment antiferromagnetic phase with TN~6 K (signalled by neutron
diffraction), in contrast to previous reports. The failure to detect the small
ordered moment suggests it has a fluctuating (> 10 MHz) nature, which is
consistent with the interpretation of NMR data. For 0.01<=x<=0.05 the muon
depolarisation in the ordered state is described by two terms of equal
amplitude: an exponentially damped spontaneous oscillation and a Lorentzian
Kubo-Toyabe function. These terms are associated with antiferromagnetic order
with substantial moments. The Knight-shift measured in a magnetic field of 0.6
T on single-crystalline U(Pt0.95Pd0.05)3 in the paramagnetic state shows two
signals for B perpendicular to c, while only one signal is observed for B||c.
The observation of two signals for B perpendicular to c, while there is only
one muon localisation site (0,0,0), points to the presence of two spatially
distinct regions of different magnetic response.Comment: 25 pages including 12 figures (PS), J. Phys.: Condens. Matter, in
prin
Gravitational vacuum polarization IV: Energy conditions in the Unruh vacuum
Building on a series of earlier papers [gr-qc/9604007, gr-qc/9604008,
gr-qc/9604009], I investigate the various point-wise and averaged energy
conditions in the Unruh vacuum. I consider the quantum stress-energy tensor
corresponding to a conformally coupled massless scalar field, work in the
test-field limit, restrict attention to the Schwarzschild geometry, and invoke
a mixture of analytical and numerical techniques. I construct a semi-analytic
model for the stress-energy tensor that globally reproduces all known numerical
results to within 0.8%, and satisfies all known analytic features of the
stress-energy tensor. I show that in the Unruh vacuum (1) all standard
point-wise energy conditions are violated throughout the exterior region--all
the way from spatial infinity down to the event horizon, and (2) the averaged
null energy condition is violated on all outgoing radial null geodesics. In a
pair of appendices I indicate general strategy for constructing semi-analytic
models for the stress-energy tensor in the Hartle-Hawking and Boulware states,
and show that the Page approximation is in a certain sense the minimal ansatz
compatible with general properties of the stress-energy in the Hartle-Hawking
state.Comment: 40 pages; plain LaTeX; uses epsf.sty (ten encapsulated postscript
figures); two tables (table and tabular environments). Should successfully
compile under both LaTeX 209 and the 209 compatibility mode of LaTeX2
From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture
The recent interest in ``time machines'' has been largely fueled by the
apparent ease with which such systems may be formed in general relativity,
given relatively benign initial conditions such as the existence of traversable
wormholes or of infinite cosmic strings. This rather disturbing state of
affairs has led Hawking to formulate his Chronology Protection Conjecture,
whereby the formation of ``time machines'' is forbidden. This paper will use
several simple examples to argue that the universe appears to exhibit a
``defense in depth'' strategy in this regard. For appropriate parameter regimes
Casimir effects, wormhole disruption effects, and gravitational back reaction
effects all contribute to the fight against time travel. Particular attention
is paid to the role of the quantum gravity cutoff. For the class of model
problems considered it is shown that the gravitational back reaction becomes
large before the Planck scale quantum gravity cutoff is reached, thus
supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision
- …