34 research outputs found

    Prograde spin-up during gravitational collapse

    Full text link
    Asteroids, planets, stars in some open clusters, as well as molecular clouds appear to possess a preferential spin-orbit alignment, pointing to shared processes that tie their rotation at birth to larger parent structures. We present a new mechanism that describes how collections of particles or 'clouds' gain a prograde rotational component when they collapse or contract while subject to an external, central force. The effect is geometric in origin, as relative shear on curved orbits moves their shared center-of-mass slightly inward and toward the external potential during a collapse, exchanging orbital angular momentum into aligned (prograde) rotation. We perform illustrative analytical and N-body calculations to show that this process of prograde spin-up proceeds quadratically in time (δLrott2\delta L_\mathrm{rot} \propto t^2) until the collapse nears completion. The total rotational gain increases with the size of the cloud prior to its collapse: δLrot/LH(Rcl/RH)5\delta L_\mathrm{rot}/L_\mathrm{H} \propto (R_\mathrm{cl}/R_\mathrm{H})^5, and typically with distance to the source of the potential (LHr0)L_\mathrm{H}\propto r_0). For clouds that form at the interface of shear and self-gravity (RclRHR_\mathrm{cl} \sim R_\mathrm{H}), prograde spin-up means that even setups with large initial retrograde rotation collapse to form prograde-spinning objects. Being a geometric effect, prograde spin-up persists around any central potential that triggers shear, even those where the shear is strongly retrograde. We highlight an application to the Solar System, where prograde spin-up can explain the frequency of binary objects in the Kuiper belt with prograde rotation.Comment: Accepted for publication in A&A. Co-first authors. Comments and questions welcom

    Sarcopenia: etiology, clinical consequences, intervention, and assessment

    Get PDF
    The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence

    Long-term safety and efficacy of eculizumab in generalized myasthenia gravis

    Get PDF

    Consistent improvement with eculizumab across muscle groups in myasthenia gravis

    Get PDF

    Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates

    Get PDF
    Terrestrial invertebrates are key components in ecosystems, with crucial roles in soil structure, functioning, and ecosystem services. The present chapter covers how terrestrial invertebrates are impacted by organic chemicals, focusing on up-to-date information regarding bioavailability, exposure routes and general concepts on bioaccumulation, toxicity, and existing models. Terrestrial invertebrates are exposed to organic chemicals through different routes, which are dependent on both the organismal traits and nature of exposure, including chemical properties and media characteristics. Bioaccumulation and toxicity data for several groups of organic chemicals are presented and discussed, attempting to cover plant protection products (herbicides, insecticides, fungicides, and molluscicides), veterinary and human pharmaceuticals, polycyclic aromatic compounds, polychlorinated biphenyls, flame retardants, and personal care products. Chemical mixtures are also discussed bearing in mind that chemicals appear simultaneously in the environment. The biomagnification of organic chemicals is considered in light of the consumption of terrestrial invertebrates as novel feed and food sources. This chapter highlights how science has contributed with data from the last 5 years, providing evidence on bioavailability, bioaccumulation, and toxicity derived from exposure to organic chemicals, including insights into the main challenges and shortcomings to extrapolate results to real exposure scenarios

    Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    Get PDF
    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to similar to 370,000 women, we identify 389 independent signals (P <5 x 10(-8)) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain similar to 7.4% of the population variance in age at menarche, corresponding to similar to 25% of the estimated heritability. We implicate similar to 250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility

    Neotropical ant-plant Triplaris americana attracts Pseudomyrmex mordax ant queens during seedling stages

    Get PDF
    The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism in the Neotropics. The ants colonize the hollow stems of their hosts, and in exchange, the plants benefit from a reduced degree of herbivory. The previous studies have shown that workers can discriminate their host from other plants, including a closely related species. Little is known about how queens locate their host during the colonization process, but it has been suggested that host recognition is mediated by volatiles. Since queens of Pseudomyrmex mordax colonize their hosts during the seedling stage, we hypothesized that queens would discriminate leaves of seedlings from adult plants. To evaluate our hypothesis, we used a two-sided olfactometer, to test the preference of queens towards different leaf and plant ages of Triplaris americana. Virgin queens of Pseudomyrmex mordax preferred seedlings over adult plants, as well as plant leaves over empty controls, showing no discrimination for leaf age. Our results suggest that the volatiles virgin queens recognize are either produced or are more abundant at the early growing stage of the host when colonization is crucial for the host's survival. © 2017, The Author(s)

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    Get PDF
    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project–imputed genotype data in up to ~370,000 women, we identify 389 independent signals (P < 5 × 108^{−8}) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ~7.4% of the population variance in age at menarche, corresponding to ~25% of the estimated heritability. We implicate ~250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility

    On the growth of pebble-accreting planetesimals

    Get PDF
    Context. Pebble accretion is a newly discovered mechanism to quickly grow the cores of planets. In pebble accretion, gravity and gas drag conspire to yield large collisional cross sections for small particles in protoplanetary disks. However, before pebble accretion commences, aerodynamic deflection may act to prevent planetesimals from becoming large, because particles tend to follow gas streamlines. Aims. We derive the planetesimal radius where pebble accretion is initiated and determine the growth timescales of planetesimals by sweep-up of small particles. Methods. The equation of motion for a pebble, including gas drag and gravitational interactions, was integrated in three dimensions at distances of 1, 3, and 10 AU from the star. We obtained the collision efficiency factor as the ratio of the numerically obtained collisional cross section to the planetesimal surface area, from which we obtained the growth timescales. Integrations were conducted in the potential flow limit (steady, inviscid) and in the Stokes flow regime (steady, viscid). Results. Only particles of stopping time ts ≪ tX where tX ≈ 103 s experience aerodynamic deflection. Even in this case, the planetesimal’s gravity always ensures positive collision factors. The planetesimal radius where growth proceeds slowest is ≈ 100 km (less for colder disks) corresponding to interactions shifting from the geometric to the Safronov focusing regime. For particles ts ≫ tX pebble accretion only commences after this phase and is characterized by a steep drop in growth timescales. At 1 AU, growth timescales are shorter than the disk lifetime for pebbles larger than 0.03 cm. The planetesimal radius RPA where pebble accretion commences increases with disk orbital radius. At distances beyond ~ 10 AU, sweep-up growth times are always longer than 10 Myr, while in the inner disk (≲3 AU) the viability of the sweep-up scenario is determined by the outcome of pebble-planetesimal collisions in the geometric regime. We present analytical fits for the collision efficiency factors and the minimum planetesimal radius RPA required for pebble accretion
    corecore