7,725 research outputs found

    <Tνμ>ren<T^{\mu}_{\nu}>_{ren} of the quantized fields in the Unruh state in the Schwarzschild spacetime

    Full text link
    The renormalized expectation value of the stress energy tensor of the conformally invariant massless fields in the Unruh state in the Schwarzschild spacetime is constructed. It is achieved through solving the conservation equation in conformal space and utilizing the regularity conditions in the physical metric. The relations of obtained results to the existing approximations are analysed.Comment: 17 pages, REVTE

    Is Quantum Spacetime Foam Unstable?

    Full text link
    A very simple wormhole geometry is considered as a model of a mode of topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of the hole reduces to quantum mechanics of one variable, throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It has no bound states. Wormhole wave functions must eventually leak to large radii. This suggests that stability considerations along these lines may place strong constraints on the nature and even the existence of spacetime foam.Comment: 15 page

    Dirty black holes: Quasinormal modes for "squeezed" horizons

    Full text link
    We consider the quasinormal modes for a class of black hole spacetimes that, informally speaking, contain a closely ``squeezed'' pair of horizons. (This scenario, where the relevant observer is presumed to be ``trapped'' between the horizons, is operationally distinct from near-extremal black holes with an external observer.) It is shown, by analytical means, that the spacing of the quasinormal frequencies equals the surface gravity at the squeezed horizons. Moreover, we can calculate the real part of these frequencies provided that the horizons are sufficiently close together (but not necessarily degenerate or even ``nearly degenerate''). The novelty of our analysis (which extends a model-specific treatment by Cardoso and Lemos) is that we consider ``dirty'' black holes; that is, the observable portion of the (static and spherically symmetric) spacetime is allowed to contain an arbitrary distribution of matter.Comment: 15 pages, uses iopart.cls and setstack.sty V2: Two references added. Also, the appendix now relates our computation of the Regge-Wheeler potential for gravity in a generic "dirty" black hole to the results of Karlovini [gr-qc/0111066

    Scalar Field Quantum Inequalities in Static Spacetimes

    Get PDF
    We discuss quantum inequalities for minimally coupled scalar fields in static spacetimes. These are inequalities which place limits on the magnitude and duration of negative energy densities. We derive a general expression for the quantum inequality for a static observer in terms of a Euclidean two-point function. In a short sampling time limit, the quantum inequality can be written as the flat space form plus subdominant correction terms dependent upon the geometric properties of the spacetime. This supports the use of flat space quantum inequalities to constrain negative energy effects in curved spacetime. Using the exact Euclidean two-point function method, we develop the quantum inequalities for perfectly reflecting planar mirrors in flat spacetime. We then look at the quantum inequalities in static de~Sitter spacetime, Rindler spacetime and two- and four-dimensional black holes. In the case of a four-dimensional Schwarzschild black hole, explicit forms of the inequality are found for static observers near the horizon and at large distances. It is show that there is a quantum averaged weak energy condition (QAWEC), which states that the energy density averaged over the entire worldline of a static observer is bounded below by the vacuum energy of the spacetime. In particular, for an observer at a fixed radial distance away from a black hole, the QAWEC says that the averaged energy density can never be less than the Boulware vacuum energy density.Comment: 27 pages, 2 Encapsulated Postscript figures, uses epsf.tex, typeset in RevTe

    Gravitational vacuum polarization IV: Energy conditions in the Unruh vacuum

    Full text link
    Building on a series of earlier papers [gr-qc/9604007, gr-qc/9604008, gr-qc/9604009], I investigate the various point-wise and averaged energy conditions in the Unruh vacuum. I consider the quantum stress-energy tensor corresponding to a conformally coupled massless scalar field, work in the test-field limit, restrict attention to the Schwarzschild geometry, and invoke a mixture of analytical and numerical techniques. I construct a semi-analytic model for the stress-energy tensor that globally reproduces all known numerical results to within 0.8%, and satisfies all known analytic features of the stress-energy tensor. I show that in the Unruh vacuum (1) all standard point-wise energy conditions are violated throughout the exterior region--all the way from spatial infinity down to the event horizon, and (2) the averaged null energy condition is violated on all outgoing radial null geodesics. In a pair of appendices I indicate general strategy for constructing semi-analytic models for the stress-energy tensor in the Hartle-Hawking and Boulware states, and show that the Page approximation is in a certain sense the minimal ansatz compatible with general properties of the stress-energy in the Hartle-Hawking state.Comment: 40 pages; plain LaTeX; uses epsf.sty (ten encapsulated postscript figures); two tables (table and tabular environments). Should successfully compile under both LaTeX 209 and the 209 compatibility mode of LaTeX2

    Quantum Dynamics of Lorentzian Spacetime Foam

    Full text link
    A simple spacetime wormhole, which evolves classically from zero throat radius to a maximum value and recontracts, can be regarded as one possible mode of fluctuation in the microscopic ``spacetime foam'' first suggested by Wheeler. The dynamics of a particularly simple version of such a wormhole can be reduced to that of a single quantity, its throat radius; this wormhole thus provides a ``minisuperspace model'' for a structure in Lorentzian-signature foam. The classical equation of motion for the wormhole throat is obtained from the Einstein field equations and a suitable equation of state for the matter at the throat. Analysis of the quantum behavior of the hole then proceeds from an action corresponding to that equation of motion. The action obtained simply by calculating the scalar curvature of the hole spacetime yields a model with features like those of the relativistic free particle. In particular the Hamiltonian is nonlocal, and for the wormhole cannot even be given as a differential operator in closed form. Nonetheless the general solution of the Schr\"odinger equation for wormhole wave functions, i.e., the wave-function propagator, can be expressed as a path integral. Too complicated to perform exactly, this can yet be evaluated via a WKB approximation. The result indicates that the wormhole, classically stable, is quantum-mechanically unstable: A Feynman-Kac decomposition of the WKB propagator yields no spectrum of bound states. Though an initially localized wormhole wave function may oscillate for many classical expansion/recontraction periods, it must eventually leak to large radius values. The possibility of such a mode unstable against growth, combined withComment: 37 pages, 93-

    Restrictions on negative energy density in a curved spacetime

    Get PDF
    Recently a restriction ("quantum inequality-type relation") on the (renormalized) energy density measured by a static observer in a "globally static" (ultrastatic) spacetime has been formulated by Pfenning and Ford for the minimally coupled scalar field, in the extension of quantum inequality-type relation on flat spacetime of Ford and Roman. They found negative lower bounds for the line integrals of energy density multiplied by a sampling (weighting) function, and explicitly evaluate them for some specific spacetimes. In this paper, we study the lower bound on spacetimes whose spacelike hypersurfaces are compact and without boundary. In the short "sampling time" limit, the bound has asymptotic expansion. Although the expansion can not be represented by locally invariant quantities in general due to the nonlocal nature of the integral, we explicitly evaluate the dominant terms in the limit in terms of the invariant quantities. We also make an estimate for the bound in the long sampling time limit.Comment: LaTex, 23 Page

    Back Reaction of Hawking Radiation on Black Hole Geometry

    Full text link
    We propose a model for the geometry of a dynamical spherical shell in which the metric is asymptotically Schwarzschild, but deviates from Ricci-flatness in a finite neighbourhood of the shell. Hence, the geometry corresponds to a `hairy' black hole, with the hair originating on the shell. The metric is regular for an infalling shell, but it bifurcates, leading to two disconnected Schwarzschild-like spacetime geometries. The shell is interpreted as either collapsing matter or as Hawking radiation, depending on whether or not the shell is infalling or outgoing. In this model, the Hawking radiation results from tunnelling between the two geometries. Using this model, the back reaction correction from Hawking radiation is calculated.Comment: Latex file, 15 pages, 4 figures enclosed, uses eps

    Fundamental limitations on "warp drive" spacetimes

    Full text link
    "Warp drive" spacetimes are useful as "gedanken-experiments" that force us to confront the foundations of general relativity, and among other things, to precisely formulate the notion of "superluminal" communication. We verify the non-perturbative violation of the classical energy conditions of the Alcubierre and Natario warp drive spacetimes and apply linearized gravity to the weak-field warp drive, testing the energy conditions to first and second order of the non-relativistic warp-bubble velocity. We are primarily interested in a secondary feature of the warp drive that has not previously been remarked upon, if it could be built, the warp drive would be an example of a "reaction-less drive". For both the Alcubierre and Natario warp drives we find that the occurrence of significant energy condition violations is not just a high-speed effect, but that the violations persist even at arbitrarily low speeds. An interesting feature of this construction is that it is now meaningful to place a finite mass spaceship at the center of the warp bubble, and compare the warp field energy with the mass-energy of the spaceship. There is no hope of doing this in Alcubierre's original version of the warp-field, since by definition the point in the center of the warp bubble moves on a geodesic and is "massless". That is, in Alcubierre's original formalism and in the Natario formalism the spaceship is always treated as a test particle, while in the linearized theory we can treat the spaceship as a finite mass object. For both the Alcubierre and Natario warp drives we find that even at low speeds the net (negative) energy stored in the warp fields must be a significant fraction of the mass of the spaceship.Comment: 18 pages, Revtex4. V2: one reference added, some clarifying comments and discussion, no physics changes, accepted for publication in Classical and Quantum Gravit

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision
    • …
    corecore