6 research outputs found

    Properties of Al-doped zinc oxide and In-doped zinc oxide bilayer transparent conducting oxides for solar cell applications

    Get PDF
    International audienceNovel aluminum and indium doped zinc oxide bilayer transparent conducting oxide thin films have been developed by simple sol gel spin coating and annealed at 500 C for an hour under nitrogen ambient towards solar cell applications. The structural, electrical and optical properties of both the as deposited and annealed bilayer thin films are characterized. X-ray diffraction studies showed a hexagonal wurtzite-type structure of ZnO with (002) orientation, which was enhanced with annealing. In atomic force microscopy studies minimum surface roughness is attained for the Al-doped ZnO/In-doped ZnO bilayer TCO films. The best Al-doped ZnO/In-doped ZnO films had sheet resistance of 0.057 M ohm/square and the films had an average transmittance in the visible region over 90%. Further results are discussed with single and bilayer structure

    Comparison of the structural properties of Zn-face and O-face single crystal homoepitaxial ZnO epilayers grown by RF-magnetron sputtering

    Get PDF
    Homoepitaxial ZnO growth is demonstrated from conventional RF-sputtering at 400 °C on both Zn and O polar faces of hydrothermally grown ZnO substrates. A minimum yield for the Rutherford backscattering and channeling spectrum, χmin, equal to ∼3% and ∼12% and a full width at half maximum of the 00.2 diffraction peak rocking curve of (70 ± 10) arc sec and (1400 ± 100) arc sec have been found for samples grown on the Zn and O face, respectively. The structural characteristics of the film deposited on the Zn face are comparable with those of epilayers grown by more complex techniques like molecular beam epitaxy. In contrast, the film simultaneously deposited on the O-face exhibits an inferior crystalline structure ∼0.7% strained in the c-direction and a higher atomic number contrast compared with the substrate, as revealed by high angle annular dark field imaging measurements. These differences between the Zn- and O-face films are discussed in detail and associated with the different growth mechanisms prevailing on the two surfacesThis work has been performed within “The Norwegian Research Centre for Solar Cell Technology” Project No. 193829, a Centre for Environment-friendly Energy Research co-sponsored by the Norwegian Research Council and research and industry partners in Norway and the Frienergi program. R.S. acknowledges the partial support from the EU 7th Framework Programme Project No. REGPOT-CT-2013- 316014 (EAgLE)

    Effect of heat treatment on properties of cold sprayed nanocrystalline copper alumina coatings

    No full text
    Cold gas dynamic spraying appears to be the most appropriate thermal spraying technique for depositing nanocrystalline powders given its low deposition temperature. Nanocrystalline copper alumina coatings were deposited on copper substrates and the effect of heat treatment temperature on porosity, grain size, microhardness and conductivity of the coatings was studied and compared with that of cold sprayed copper. The role of alumina in inhibiting grain growth and in strengthening the copper matrix was investigated. An attempt has been made to assess the contribution of various mechanisms to the conductivity of nanocrystalline copper alumina coatings

    A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications

    Get PDF
    A novel and simple chemical method based on sol-gel processing was proposed to deposit metastable orthorhombic tin oxide (SnOx) thin films on glass substrates at room temperature. The resultant samples are labeled according to the solvents used: ethanol (SnO-EtOH), isopropanol (SnO-IPA) and methanol (SnO-MeOH). The variations in the structural, morphological and optical properties of the thin films deposited using different solvents were characterized by X-ray diffraction, atomic force microscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence (PL) analysis. The XRD patterns confirm that all the films, irrespective of the solvents used for preparation, were polycrystalline in nature and contained a mixed phases of tin (II) oxide and tin (IV) oxide in a metastable orthorhombic crystal structure. FTIR spectra confirmed the presence of Sn=O and Sn-O in all of the samples. PL spectra showed a violet emission band centered at 380 nm (3.25 eV) for all of the solvents. The UV-vis spectra indicated a maximum absorption band shown at 332 nm and the highest average transmittance around 97% was observed for the SnO-IPA and SnO-MeOH thin film samples. The AFM results show variations in the grain size with solvent. The structural and optical properties of the SnO thin films indicate that this method of fabricating tin oxide is promising and that future work is warranted to analyze the electrical properties of the films in order to determine the viability of these films for various transparent conducting oxide applications

    Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films

    Get PDF
    Sputtering has been well-developed industrially with singular ambient gases including neutral argon (Ar), oxygen (O2), hydrogen (H2) and nitrogen (N2) to enhance the electrical and optical performances of indium tin oxide (ITO) films. Recent preliminary investigation into the use of combined ambient gases such as an Ar+O2+H2 ambient mixture, which was suitable for producing high-quality (low sheet resistance and high optical transmittance) of ITO films. To build on this promising preliminary work and develop deeper insight into the effect of ambient atmospheres on ITO film growth, this study provides a more detailed investigation of the effects of ambient combinations of Ar, O2, H2 on sputtered ITO films. Thin films of ITO were deposited on glass substrates by DC magnetron sputtering using three different ambient combinations: Ar, Ar+O2 and Ar+O2+H2. The structural, electrical and optical properties of the three ambient sputtered ITO films were systematically characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, four probe electrical conductivity and optical spectroscopy. The XRD and Raman studies confirmed the cubic indium oxide structure, which is polycrystalline at room temperature for all the samples. AFM shows the minimum surface roughness of 2.7 nm for Ar+O2+H2 sputtered thin film material. The thickness of the films was determined by the cross sectional SEM analysis and its thickness was varied from 920 to 817 nm. The columnar growth of ITO films was also discussed here. The electrical and optical measurements of Ar+O2+H2 ambient combinations shows a decreased sheet resistance (5.06 ohm/□) and increased optical transmittance (69%) than other samples. The refractive index and packing density of the films were projected using optical transmission spectrum. From the observed results the Ar+O2+H2 ambient is a good choice to enhance the total optoelectronic properties of the ITO films. The improved electrical and optical properties of ITO films with respect to the Ar+O2+H2 ambient sample were discussed in detail. In addition, the physical properties were also discussed with the influence of this ambient combination with respect to Ar, Ar+O2 and Ar+O2+H2

    Peanut shaped ZnO microstructures: controlled synthesis and nucleation growth toward low-cost dye sensitized solar cells

    No full text
    This paper describes a simple, low-temperature and cost effective chemical precipitation method in aqueous media to synthesis uniformly distributed zinc oxide (ZnO) microstructures for the fabrication of dye-sensitized solar cells (DSSCs). The size and morphology of the ZnO microstructures are systematically controlled by adjusting the concentration of the precursors, zinc acetate dihydrate and ammonium hydroxide. X-ray diffraction (XRD) and scanning electron microscopy are used for the structural characterizations and photoluminescence and Fourier transform infrared spectroscopy are used to characterize the optical properties of the ZnO, respectively. The results reveal that ZnO crystallites exhibit hexagonal wurtzite structure with preferential orientation along c-axis. The effect of ammonia concentration on the crystallinity, morphology and optical properties of ZnO microstructures and the concomitant effect on the efficiency of DSSCs is also quantified. The peanutshaped ZnO microstructure, which was found to increase DSSCs performance over other microstructure, is studied in detail in order to develop a formation mechanism. A sandwich type eosin yellow sensitized solar cell is prepared using peanut-shaped ZnO microstructures, which showed an efficiency of 0.37%. Ammonia was found to play a crucial role in the evolution of ZnO morphologies. These results are promising and provide a path towards low-cost high-performance DSSCs based on peanut-shaped ZnO microstructures and produced with only relatively simple wet chemistry synthesis
    corecore