103 research outputs found

    Governance factors in the identification of global conservation priorities for mammals

    Get PDF
    Global conservation priorities have often been identified based on the combination of species richness and threat information. With the development of the field of systematic conservation planning, more attention has been given to conservation costs. This leads to prioritizing developing countries, where costs are generally low and biodiversity is high. But many of these countries have poor governance, which may result in ineffective conservation or in larger costs than initially expected. We explore how the consideration of governance affects the selection of global conservation priorities for the world's mammals in a complementarity-based conservation prioritization. We use data on Control of Corruption (Worldwide Governance Indicators project) as an indicator of governance effectiveness, and gross domestic product per capita as an indicator of cost. We show that, while core areas with high levels of endemism are always selected as important regardless of governance and cost values, there are clear regional differences in selected sites when biodiversity, cost or governance are taken into account separately. Overall, the analysis supports the concentration of conservation efforts in most of the regions generally considered of high priority, but stresses the need for different conservation approaches in different continents owing to spatial patterns of governance and economic development

    The mismeasure of conservation

    Get PDF
    One of the basic purposes of protected areas and other effective area-based conservation interventions is to achieve conservation impact, the sum of avoided biodiversity loss and promoted recovery relative to outcomes without protection. In the context of the Convention on Biological Diversity's negotiations on the post-2020 Global Biodiversity Framework, we find that targets for area-based interventions are framed overwhelmingly with measures that fail to inform decision-makers about impact and that risk diverting limited resources away from achieving it. We show that predicting impact in space and time is feasible and can provide the basis for global guidance for jurisdictions to develop targets for conservation impact and shift investment priorities to areas where impact can be most effectively achieved

    Transistors based on the Guanosine molecule (a DNA base)

    Get PDF
    Abstract Molecules are attractive to develop nano-electronic devices. In this paper a new type of transistor is realized by using self-organized films of the Guanosine molecule, a modified DNA base. With its 40 nm channel length the transistor is a good starting point for a new class of nano-electronics devices. Experimental current-voltage characteristics are shown. A circuital model is also proposed

    A global map of terrestrial habitat types

    Get PDF
    Funder: NatureMap (https://naturemap.earth/) through Norway's International Climate and Forest Initiative (NICFI)Abstract: We provide a global, spatially explicit characterization of 47 terrestrial habitat types, as defined in the International Union for Conservation of Nature (IUCN) habitat classification scheme, which is widely used in ecological analyses, including for quantifying species’ Area of Habitat. We produced this novel habitat map for the year 2015 by creating a global decision tree that intersects the best currently available global data on land cover, climate and land use. We independently validated the map using occurrence data for 828 species of vertebrates (35152 point plus 8181 polygonal occurrences) and 6026 sampling sites. Across datasets and mapped classes we found on average a balanced accuracy of 0.77 (+¯0.14 SD) at Level 1 and 0.71 (+¯0.15 SD) at Level 2, while noting potential issues of using occurrence records for validation. The maps broaden our understanding of habitats globally, assist in constructing area of habitat refinements and are relevant for broad-scale ecological studies and future IUCN Red List assessments. Periodic updates are planned as better or more recent data becomes available

    Climate change modifies risk of global biodiversity loss due to land-cover change

    Get PDF
    Climate change and land-cover change will have major impacts on biodiversity persistence worldwide. These two stressors are likely to interact, but how climate change will mediate the effects of land-cover change remains poorly understood. Here we use an empirically-derived model of the interaction between habitat loss and climate to predict the implications of this for biodiversity loss and conservation priorities at a global scale. Risk analysis was used to estimate the risk of biodiversity loss due to alternative future land-cover change scenarios and to quantify how climate change mediates this risk. We demonstrate that the interaction of climate change with land-cover change could increase the impact of land-cover change on birds and mammals by up to 43% and 24% respectively and alter the spatial distribution of threats. Additionally, we show that the ranking of global biodiversity hotspots by threat depends critically on the interaction between climate change and habitat loss. Our study suggests that the investment of conservation resources will likely change once the interaction between climate change and land-cover change is taken into account. We argue that global conservation efforts must take this into account if we are to develop cost-effective conservation policies and strategies under global change

    An assessment of the state of conservation planning in Europe

    Get PDF
    Expanding and managing current habitat and species protection measures is at the heart of the European biodiversity strategy. A structured approach to gain insights into such issues is systematic conservation planning, which utilizes techniques from decision theory to identify places and actions that contribute most effectively to policy objectives given a set of constraints. Yet culturally and historically determined European landscapes make the implementation of any conservation plans challenging, requiring an analysis of synergies and trade-offs before implementation. In this work, we review the scientific literature for evidence of previous conservation planning approaches, highlighting recent advances and success stories. We find that the conceptual characteristics of European conservation planning studies likely reduced their potential in contributing to better-informed decisions. We outline pathways towards improving the uptake of decision theory and multi-criteria conservation planning at various scales, particularly highlighting the need for (a) open data and intuitive tools, (b) the integration of biodiversity-focused conservation planning with multiple objectives, (c) accounting of dynamic ecological processes and functions, and (d) better facilitation of entry-points and codesign practices of conservation planning scenarios with stakeholders. By adopting & improving these practices, European conservation planning might become more actionable and adaptable towards implementable policy outcomes

    Mammal assemblage composition predicts global patterns in emerging infectious disease risk

    Get PDF
    As a source of emerging infectious diseases, wildlife assemblages (and related spatial patterns) must be quantitatively assessed to help identify high-risk locations. Previous assessments have largely focussed on the distributions of individual species; however, transmission dynamics are expected to depend on assemblage composition. Moreover, disease-diversity relationships have mainly been studied in the context of species loss, but assemblage composition and disease risk (e.g. infection prevalence in wildlife assemblages) can change without extinction. Based on the predicted distributions and abundances of 4466 mammal species, we estimated global patterns of disease risk through the calculation of the community-level basic reproductive ratio R0, an index of invasion potential, persistence, and maximum prevalence of a pathogen in a wildlife assemblage. For density-dependent diseases, we found that, in addition to tropical areas which are commonly viewed as infectious disease hotspots, northern temperate latitudes included high-risk areas. We also forecasted the effects of climate change and habitat loss from 2015 to 2035. Over this period, many local assemblages showed no net loss of species richness, but the assemblage composition (i.e. the mix of species and their abundances) changed considerably. Simultaneously, most areas experienced a decreased risk of density-dependent diseases but an increased risk of frequency-dependent diseases. We further explored the factors driving these changes in disease risk. Our results suggest that biodiversity and changes therein jointly influence disease risk. Understanding these changes and their drivers and ultimately identifying emerging infectious disease hotspots can help health officials prioritize resource distribution.Peer reviewe

    Capacity of countries to reduce biological invasions

    Get PDF
    The extent and impacts of biological invasions on biodiversity are largely shaped by an array of socio-economic and environmental factors, which exhibit high variation among countries. Yet, a global analysis of how these factors vary across countries is currently lacking. Here, we investigate how five broad, country-specific socio-economic and environmental indices (Governance, Trade, Environmental Performance, Lifestyle and Education, Innovation) explain country-level (1) established alien species (EAS) richness of eight taxonomic groups, and (2) proactive or reactive capacity to prevent and manage biological invasions and their impacts. These indices underpin many aspects of the invasion process, including the introduction, establishment, spread and management of alien species. They are also general enough to enable a global comparison across countries, and are therefore essential for defining future scenarios for biological invasions. Models including Trade, Governance, Lifestyle and Education, or a combination of these, best explained EAS richness across taxonomic groups and national proactive or reactive capacity. Historical (1996 or averaged over 1996–2015) levels of Governance and Trade better explained both EAS richness and the capacity of countries to manage invasions than more recent (2015) levels, revealing a historical legacy with important implications for the future of biological invasions. Using Governance and Trade to define a two-dimensional socio-economic space in which the position of a country captures its capacity to address issues of biological invasions, we identified four main clusters of countries in 2015. Most countries had an increase in Trade over the past 25 years, but trajectories were more geographically heterogeneous for Governance. Declines in levels of Governance are concerning as they may be responsible for larger levels of invasions in the future. By identifying the factors influencing EAS richness and the regions most susceptible to changes in these factors, our results provide novel insights to integrate biological invasions into scenarios of biodiversity change to better inform decision-making for policy and the management of biological invasions

    Projecting Global Biodiversity Indicators under Future Development Scenarios

    Get PDF
    To address the ongoing global biodiversity crisis, governments have set strategic objectives and have adopted indicators to monitor progress toward their achievement. Projecting the likely impacts on biodiversity of different policy decisions allows decision makers to understand if and how these targets can be met. We projected trends in two widely used indicators of population abundance Geometric Mean Abundance, equivalent to the Living Planet Index and extinction risk (the Red List Index) under different climate and land-use change scenarios. Testing these on terrestrial carnivore and ungulate species, we found that both indicators decline steadily, and by 2050, under a Business-as-usual (BAU) scenario, geometric mean population abundance declines by 18-35% while extinction risk increases for 8-23% of the species, depending on assumptions about species responses to climate change. BAU will therefore fail Convention on Biological Diversity target 12 of improving the conservation status of known threatened species. An alternative sustainable development scenario reduces both extinction risk and population losses compared with BAU and could lead to population increases. Our approach to model species responses to global changes brings the focus of scenarios directly to the species level, thus taking into account an additional dimension of biodiversity and paving the way for including stronger ecological foundations into future biodiversity scenario assessments.Peer reviewe
    corecore