614 research outputs found
Dislocation density in GaN determined by photoelectrochemical and hot-wet etching
Defects in GaN layers grown by hydride vapor-phase epitaxy have been investigated by photoelectrochemical ~PEC! etching, and by wet etching in hot H3PO4 acid and molten potassium hydroxide ~KOH!. Threading vertical wires ~i.e., whiskers! and hexagonal-shaped etch pits are formed on the etched sample surfaces by PEC and wet etching, respectively. Using atomic-force
microscopy, we find the density of ‘‘whisker-like’’ features to be 23109 cm22, the same value found for the etch-pit density on samples etched with both H3PO4 and molten KOH. This value is
comparable to the dislocation density obtained in similar samples with tunneling electron microscopy, and is also consistent with the results of Youtsey and co-workers
Growth and Investigation of GaN / AlN Quantum Dots
We have fabricated GaN quantum dots (QDs) in AlN confined layer structures by molecular beam epitaxy. The size distribution and density of the QDs have been estimated from an atomic
force microscopy study. Very high quantum efficiency of photoluminescence (PL) has been obtained in some samples with QDs. Compared to the GaN bulk samples, it increased by orders
of magnitude. In some samples the quantum size effect dominated, resulting in the blue-shift of the QD related PL peak, whereas in the samples with larger dots a red-shift up to 0.8 eV has been observed, which is related to strong polarization effects. We have observed a blue-shift of the PL peak with excitation intensity in the samples with large dots due to screening effect. The temperature-induced quenching of PL occurs at higher temperatures compared to bulk GaN due to the confinement of nonequilibrium carriers in the QDs. An excited state has been observed in some samples
Highly selective photoelectrochemical etching of nitride materials for defect investigation and device fabrication
Photoenhanced electrochemical (PEC) etching in an unstirred KOH solution under He–Cd laser illumination was used for delineating extended defects in GaN films. When a low-excitation intensity was employed, the process yielded threading vertical features at dislocation sites. Application of an external voltage or a higher-illumination intensity led to high-etch rates with smooth surfaces. Some highly resistive samples, for which no etching was obtained under normal etching conditions, could be etched with the application of a single-polarity external voltage. Finally, in a GaN sample with an AlN/GaN superstructure inside, high selectivity between AlN and GaN was achieved; in this case, the PEC process stopped at the thin AlN stop layer
Unusual luminescence lines in GaN
none11A series of sharp intense peaks was observed in the low-temperature photoluminescence spectrum of unintentionally doped GaN in the photon energy range between 3.0 and 3.46 eV. We attributed the majority of these peaks to excitons bound to unidentified structural and surface defects. Most of
the structural- and surface-related peaks ~at 3.21, 3.32, 3.34, 3.35, 3.38, and 3.42 eV! were observed in Ga polar films. In N polar GaN, we often observed the 3.45 eV peak attributed to excitons bound to the inversion domain interfaces.SCOPUS 2-s2.0-0242496327 DOI: 10.1063/1.1609632M.A. RESHCHIKOV; D. HUANG; F. YUN; P. VISCONTI; L. HE; H. MORKOC; J. JASINSKI; Z. LILIENTAL-WEBER; R.J.MOLNAR; S. S. PARK; K.Y.LEEM. A., Reshchikov; D., Huang; F., Yun; Visconti, Paolo; L., He; H., Morkoc; J., Jasinski; Z., LILIENTAL WEBER; R. J., Molnar; S. S., Park; K. Y., Le
Highly selective photoenhanced wet etching of GaN for defect investigation and device fabrication
ABSTRACTPhotoenhanced electro-chemical (PEC) wet etching has been shown to be suitable for dislocation-density estimation in n-GaN films as well as for GaN-based device fabrication. We report on PEC etching of n-GaN samples grown by MBE and HVPE methods in unstirred aqueous KOH solution under He-Cd laser illumination. Characterization of the etched samples was carried out using atomic force microscopy (AFM) in both cross-sectional and plan-view configurations and scanning electron microscopy (SEM). At moderate illumination densities, the SEM and AFM analyses reveal sub-100 nm scale threading vertical wires on the etched surfaces. The calculated density (∼1×10 9cm−2) is in agreement with dislocation density found by transmission electron microscopy. Using cross-sectional AFM, we find that these vertical wires are ∼1[.proportional]m high and are perpendicular to the sapphire surface. Applying a higher illumination density or an external voltage, we obtain a higher etch rate with a smooth free-feature etched surface. Some highly resistive samples that cannot be etched under normal conditions because the band bending is too small to confine the holes to the surface for them to participate in the PEC process, can be etched with the application of a voltage to the sample. In this case, the etch rate depends on both the polarity and the magnitude of the voltage applied. In an MBE-grown sample with an AlN/GaN superstructure inside, we report on high selectivity between AlN and GaN (AlN is an etch stop); the selectivity is due to the etching mechanism of the PEC process
Prioritization of HCV treatment in the direct-acting antiviral era: an economic evaluation
BACKGROUND & AIMS: We determined the optimal HCV treatment prioritization strategy for interferon-free (IFN-free) HCV direct-acting antivirals (DAAs) by disease stage and risk status incorporating treatment of people who inject drugs (PWID). METHODS: A dynamic HCV transmission and progression model compared the cost-effectiveness of treating patients early vs. delaying until cirrhosis for patients with mild or moderate fibrosis, where PWID chronic HCV prevalence was 20, 40 or 60%. Treatment duration was 12weeks at £3300/wk, to achieve a 95% sustained viral response and was varied by genotype/stage in alternative scenarios. We estimated long-term health costs (in £UK=€1.3=$1.5) and outcomes as quality adjusted life-years (QALYs) gained using a £20,000 willingness to pay per QALY threshold. We ranked strategies with net monetary benefit (NMB); negative NMB implies delay treatment. RESULTS: The most cost-effective group to treat were PWID with moderate fibrosis (mean NMB per early treatment £60,640/£23,968 at 20/40% chronic prevalence, respectively), followed by PWID with mild fibrosis (NMB £59,258 and £19,421, respectively) then ex-PWID/non-PWID with moderate fibrosis (NMB £9,404). Treatment of ex-PWID/non-PWID with mild fibrosis could be delayed (NMB -£3,650). In populations with 60% chronic HCV among PWID it was only cost-effective to prioritize DAAs to ex-PWID/non-PWID with moderate fibrosis. For every one PWID in the 20% chronic HCV setting, 2 new HCV infections were averted. One extra HCV-related death was averted per 13 people with moderate disease treated. Rankings were unchanged with reduced drug costs or varied sustained virological response/duration by genotype/fibrosis stage. CONCLUSIONS: Treating PWID with moderate or mild HCV with IFN-free DAAs is cost-effective compared to delay until cirrhosis, except when chronic HCV prevalence and reinfection risk is very high
Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010
This article is based upon work from COST Action ES1101 "Harmonising Global Biodiversity Modelling" (Harmbio), supported by COST (European Cooperation in Science and Technology).Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on five year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four sub-groups based on breeding habitat affinity (grassland, woodland, wetland and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species sub-groups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multi-faceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.Publisher PDFPeer reviewe
Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam
During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks
for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton
beam bunches, separated by 100 ns. This tightly bunched beam structure allows a
very accurate time of flight measurement of neutrinos from CERN to LNGS on an
event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing
synchronization have been substantially improved for this campaign, taking
ad-vantage of additional independent GPS receivers, both at CERN and LNGS as
well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS.
The ICARUS-T600 detector has collected 25 beam-associated events; the
corresponding time of flight has been accurately evaluated, using all different
time synchronization paths. The measured neutrino time of flight is compatible
with the arrival of all events with speed equivalent to the one of light: the
difference between the expected value based on the speed of light and the
measured value is tof_c - tof_nu = (0.10 \pm 0.67stat. \pm 2.39syst.) ns. This
result is in agreement with the value previously reported by the ICARUS
collaboration, tof_c - tof_nu = (0.3 \pm 4.9stat. \pm 9.0syst.) ns, but with
improved statistical and systematic errors.Comment: 21 pages, 13 figures, 1 tabl
Measurement of CNGS muon neutrino speed with Borexino
We have measured the speed of muon neutrinos with the Borexino detector using
short-bunch CNGS beams. The final result for the difference in time-of-flight
between a =17 GeV muon neutrino and a particle moving at the speed of light
in vacuum is {\delta}t = 0.8 \pm 0.7stat \pm 2.9sys ns, well consistent with
zero.Comment: 6 pages, 5 figure
- …