617 research outputs found
Fluctuation relation for a L\'evy particle
We study the work fluctuations of a particle subjected to a deterministic
drag force plus a random forcing whose statistics is of the L\'evy type. In the
stationary regime, the probability density of the work is found to have ``fat''
power-law tails which assign a relatively high probability to large
fluctuations compared with the case where the random forcing is Gaussian. These
tails lead to a strong violation of existing fluctuation theorems, as the ratio
of the probabilities of positive and negative work fluctuations of equal
magnitude behaves in a non-monotonic way. Possible experiments that could probe
these features are proposed.Comment: 5 pages, 2 figures, RevTeX4; v2: minor corrections and references
added; v3: typos corrected, new conclusion, close to published versio
Relevance of initial and final conditions for the Fluctuation Relation in Markov processes
Numerical observations on a Markov chain and on the continuous Markov process
performed by a granular tracer show that the ``usual'' fluctuation relation for
a given observable is not verified for finite (but arbitrarily large) times.
This suggests that some terms which are usually expected to be negligible, i.e.
``border terms'' dependent only on initial and final states, in fact cannot be
neglected. Furthermore, the Markov chain and the granular tracer behave in a
quite similar fashion.Comment: 23 pages, 5 figures, submitted to JSTA
Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited
We revisit the model of a Brownian particle in a heat bath submitted to an
actively controlled force proportional to the velocity that leads to thermal
noise reduction (cold damping). We investigate the influence of the continuous
feedback on the fluctuations of the total entropy production and show that the
explicit expression of the detailed fluctuation theorem involves different
dynamics and observables in the forward and backward processes. As an
illustration, we study the analytically solvable case of a harmonic oscillator
and calculate the characteristic function of the entropy production in a
nonequilibrium steady state. We then determine the corresponding large
deviation function which results from an unusual interplay between 'boundary'
and 'bulk' contributions.Comment: 16 pages, 5 figures. References 9,10,13,14,15 added. A few changes in
the text. Accepted for publication in J. Stat. Mec
Granular Brownian motion
We study the stochastic motion of an intruder in a dilute driven granular
gas. All particles are coupled to a thermostat, representing the external
energy source, which is the sum of random forces and a viscous drag. The
dynamics of the intruder, in the large mass limit, is well described by a
linear Langevin equation, combining the effects of the external bath and of the
"granular bath". The drag and diffusion coefficients are calculated under few
assumptions, whose validity is well verified in numerical simulations. We also
discuss the non-equilibrium properties of the intruder dynamics, as well as the
corrections due to finite packing fraction or finite intruder mass.Comment: 19 pages, 4 figures, in press on Journal of Statistical Mechanics:
Theory and Experiment
Lower bounds on dissipation upon coarse graining
By different coarse-graining procedures we derive lower bounds on the total
mean work dissipated in Brownian systems driven out of equilibrium. With
several analytically solvable examples we illustrate how, when, and where the
information on the dissipation is captured.Comment: 11 pages, 8 figure
Probing active forces via a fluctuation-dissipation relation: Application to living cells
We derive a new fluctuation-dissipation relation for non-equilibrium systems
with long-term memory. We show how this relation allows one to access new
experimental information regarding active forces in living cells that cannot
otherwise be accessed. For a silica bead attached to the wall of a living cell,
we identify a crossover time between thermally controlled fluctuations and
those produced by the active forces. We show that the probe position is
eventually slaved to the underlying random drive produced by the so-called
active forces.Comment: 5 page
Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS
We performed a search for short gravitational wave bursts using about 3 years
of data of the resonant bar detectors Nautilus and Explorer. Two types of
analysis were performed: a search for coincidences with a low background of
accidentals (0.1 over the entire period), and the calculation of upper limits
on the rate of gravitational wave bursts. Here we give a detailed account of
the methodology and we report the results: a null search for coincident events
and an upper limit that improves over all previous limits from resonant
antennas, and is competitive, in the range h_rss ~1E-19, with limits from
interferometric detectors. Some new methodological features are introduced that
have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure
Is it possible to experimentally verify the fluctuation relation? A review of theoretical motivations and numerical evidence
The theoretical motivations to perform experimental tests of the stationary
state fluctuation relation are reviewed. The difficulties involved in such
tests, evidenced by numerical simulations, are also discussed.Comment: 36 pages, 4 figures. Extended version of a presentation to the
discussion "Is it possible to experimentally verify the fluctuation
theorem?", IHP, Paris, December 1, 2006. Comments are very welcom
Hedgerow Systems and Livestock in Philippine Grasslands: GHG Emissions
Hedgerow systems are widely adopted in the smallholder farms in the sloping grassland areas of Claveria, Mindanao, Philippines. The system is effective in addressing soil erosion problems and in conserving the topsoil. Gmelina arborea and Eucalyptus deglupta are two fast-growing timber species that are planted in hedgerow systems while maize is planted in the alley areas in between the hedgerows. Livestock holdings are widespread in Claveria, with 74% of the households having livestock. Cattle and carabao are the most common livestock in smallholder farms providing draught power for land preparation and transportation. In hedgerow systems, fodder tree leaves and crop residues are fed to livestock, while animal manure is added to the soil. Thus, these systems may serve as both a source and sink of methane and nitrogen oxides, depending on the management practices and component trees and crops of the system. This study aims to estimate methane emissions from livestock holdings and nitrogen oxide emissions through fertilization, tree litterfall and decomposition, maize residue incorporation and livestock manure from G. arborea and E. deglupta hedgerow systems
Effect of cosmic rays on the resonant gravitational wave detector NAUTILUS at temperature T=1.5 K
The interaction between cosmic rays and the gravitational wave bar detector
NAUTILUS is experimentally studied with the aluminum bar at temperature of
T=1.5 K. The results are compared with those obtained in the previous runs when
the bar was at T=0.14 K. The results of the run at T = 1.5 K are in agreement
with the thermo-acoustic model; no large signals at unexpected rate are
noticed, unlike the data taken in the run at T = 0.14 K. The observations
suggest a larger efficiency in the mechanism of conversion of the particle
energy into vibrational mode energy when the aluminum bar is in the
superconductive status.Comment: 7 pages, 3 figures, 2 tables. Accepted by Physics Letters
- …