2,496 research outputs found

    Comparison of mean-field theories for vortices in trapped Bose-Einstein condensates

    Full text link
    We compute structures of vortex configurations in a harmonically trapped Bose-Einstein condensed atom gas within three different gapless self-consistent mean-field theories. Outside the vortex core region, the density profiles for the condensate and the thermal gas are found to differ only by a few percent between the Hartree-Fock-Bogoliubov-Popov theory and two of its recently proposed gapless extensions. In the core region, however, the differences in the density profiles are substantial. The structural differences are reflected in the energies of the quasiparticle states localized near the vortex core. Especially, the predictions for the energy of the lowest quasiparticle excitation differ considerably between the theoretical models investigated.Comment: 4 pages, 2 figure

    Supercurrent-induced temperature gradient across a nonequilibrium SNS Josephson junction

    Full text link
    Using tunneling spectroscopy, we have measured the local electron energy distribution function in the normal part of a superconductor-normal metal-superconductor (SNS) Josephson junction containing an extra lead to a normal reservoir. In the presence of simultaneous supercurrent and injected quasiparticle current, the distribution function exhibits a sharp feature at very low energy. The feature is odd in energy, and odd under reversal of either the supercurrent or the quasiparticle current direction. The feature represents an effective temperature gradient across the SNS Josephson junction that is controllable by the supercurrent.Comment: 4 pages, 4 figures, corrected typos, added plot to figure

    Nonequilibrium characteristics in all-superconducting tunnel structures

    Full text link
    We study the nonequilibrium characteristics of superconducting tunnel structures in the case when one of the superconductors is a small island confined between large superconductors. The state of this island can be probed for example via the supercurrent flowing through it. We study both the far-from-equilibrium limit when the rate of injection for the electrons into the island exceeds the energy relaxation inside it, and the quasiequilibrium limit when the electrons equilibrate between themselves. We also address the crossover between these limits employing the collision integral derived for the superconducting case. The clearest signatures of the nonequilibrium limit are the anomalous heating effects seen as a supercurrent suppression at low voltages, and the hysteresis at voltages close to the gap edge 2Δ/e2\Delta/e, resulting from the peculiar form of the nonequilibrium distribution function.Comment: 8 pages, 10 figure

    On the effect of the thermal gas component to the stability of vortices in trapped Bose-Einstein condensates

    Full text link
    We study the stability of vortices in trapped single-component Bose-Einstein condensates within self-consistent mean-field theories--especially we consider the Hartree-Fock-Bogoliubov-Popov theory and its recently proposed gapless extensions. It is shown that for sufficiently repulsively interacting systems the anomalous negative-energy modes related to vortex instabilities are lifted to positive energies due to partial filling of the vortex core with noncondensed gas. Such a behavior implies that within these theories the vortex states are eventually stable against transfer of condensate matter to the anomalous core modes. This self-stabilization of vortices, shown to occur under very general circumstances, is contrasted to the predictions of the non-self-consistent Bogoliubov approximation, which is known to exhibit anomalous modes for all vortex configurations and thus implying instability of these states. In addition, the shortcomings of these approximations in describing the properties of vortices are analysed, and the need of a self-consistent theory taking properly into account the coupled dynamics of the condensate and the noncondensate atoms is emphasized.Comment: 8 page

    Thermal leptogenesis in a 5D split fermion scenario with bulk neutrinos

    Full text link
    We study the thermal leptogenesis in a hybrid model, which combines the so called split fermion model and the bulk neutrino model defined in five dimensional spacetime. This model predicts the existence of a heavy neutrino pair nearly degenerate in mass, whose decays might generate a CP violation large enough for creating the baryon asymmetry of the universe through leptogenesis. We investigate numerically the constraints this sets on the parameters of the model such as the size of the compactified fifth dimension.Comment: 22 pages, 9 figure

    Stability of multiquantum vortices in dilute Bose-Einstein condensates

    Full text link
    Multiply quantized vortices in trapped Bose-Einstein condensates are studied using the Bogoliubov theory. Suitable combinations of a localized pinning potential and external rotation of the system are found to energetically stabilize, both locally and globally, vortices with multiple circulation quanta. We present a phase diagram for stable multiply quantized vortices in terms of the angular rotation frequency and the width of the pinning potential. We argue that multiquantum vortices could be experimentally created using these two expedients.Comment: 5 pages, 4 figure

    Adiabaticity Criterion for Moving Vortices in Dilute Bose-Einstein Condensates

    Full text link
    Considering a moving vortex line in a dilute atomic Bose-Einstein condensate within time-dependent Hartree-Fock-Bogoliubov-Popov theory, we derive a criterion for the quasiparticle excitations to follow the vortex core rigidly. The assumption of adiabaticity, which is crucial for the validity of the stationary self-consistent theories in describing such time-dependent phenomena, is shown to imply a stringent criterion for the velocity of the vortex line. Furthermore, this condition is shown to be violated in the recent vortex precession experiments.Comment: 4 pages, 1 figur

    Electrophoretic deposition of composite coatings based on alginate matrix/45S5 bioactive glass particles doped with B, Zn or Sr

    Get PDF
    In this research work composite coatings made of alginate and 45S5 bioactive glass particles doped with B, Zn or Sr were synthesized by means of electrophoretic deposition and characterized from morphological, compositional, thermogravimetric, mechanical and electrochemical points of view. The developed coatings were also subjected to in vitro test in SBF solution to evaluate their ability to induce hydroxyapatite precipitation and cytocompatibility evaluation using human primary fibroblasts. The obtained results demonstrated a good homogeneity of the coatings, high adhesion and a protective behavior towards the substrate. The thermogravimetric analysis proved that the glass amount was constant before and after the deposition and all the investigated coatings promoted the deposition of hydroxyapatite but with different kinetics. Since the Zn containing coating showed the best bioactive behavior it was subjected to cytocompatibility test, which demonstrated, after an initial reduction of cell viability, a good cell proliferation and the production of collagen from the ECM. These findings suggest that the obtained coatings are promising materials to coat metallic prosthetic devices

    Structure and Stability of Vortices in Dilute Bose-Einstein Condensates at Ultralow Temperatures

    Full text link
    We compute the structure of a quantized vortex line in a harmonically trapped dilute atomic Bose-Einstein condensate using the Popov version of the Hartree-Fock-Bogoliubov mean-field theory. The vortex is shown to be (meta)stable in a nonrotating trap even in the zero-temperature limit, thus confirming that weak particle interactions induce the condensed gas a fundamental property characterizing ``classical'' superfluids. We present the structure of the vortex at ultralow temperatures and discuss the crucial effect of the thermal gas component to its energetic stability.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
    • …
    corecore