63 research outputs found

    Independent component analysis for non-standard data structures

    Get PDF
    Independent component analysis is a classical multivariate tool used for estimating independent sources among collections of mixed signals. However, modern forms of data are typically too complex for the basic theory to adequately handle. In this thesis extensions of independent component analysis to three cases of non-standard data structures are developed: noisy multivariate data, tensor-valued data and multivariate functional data. In each case we define the corresponding independent component model along with the related assumptions and implications. The proposed estimators are mostly based on the use of kurtosis and its analogues for the considered structures, resulting into functionals of rather unified form, regardless of the type of the data. We prove the Fisher consistencies of the estimators and particular weight is given to their limiting distributions, using which comparisons between the methods are also made.Riippumattomien komponenttien analyysi on moniulotteisen tilastotieteen työkalu,jota kÀytetÀÀn estimoimaan riippumattomia lÀhdesignaaleja sekoitettujen signaalien joukosta. Modernit havaintoaineistot ovat kuitenkin tyypillisesti rakenteeltaan liian monimutkaisia, jotta niitÀ voitaisiin lÀhestyÀ alan perinteisillÀ menetelmillÀ. TÀssÀ vÀitöskirjatyössÀ esitellÀÀn laajennukset riippumattomien komponenttien analyysin teoriasta kolmelle epÀstandardille aineiston muodolle: kohinaiselle moniulotteiselle datalle, tensoriarvoiselle datalle ja moniulotteiselle funktionaaliselle datalle. Kaikissa tapauksissa mÀÀritelÀÀÀn vastaava riippumattomien komponenttien malli oletuksineen ja seurauksineen. Esitellyt estimaattorit pohjautuvat enimmÀkseen huipukkuuden ja sen laajennuksien kÀyttöönottoon ja saatavat funktionaalit ovat analyyttisesti varsin yhtenÀisen muotoisia riippumatta aineiston tyypistÀ. Kaikille estimaattoreille nÀytetÀÀn niiden Fisher-konsistenttisuus ja painotettuna on erityisesti estimaattoreiden rajajakaumat, jotka mahdollistavat teoreettiset vertailut eri menetelmien vÀlillÀ

    On the behavior of extreme dd-dimensional spatial quantiles under minimal assumptions

    Full text link
    "Spatial" or "geometric" quantiles are the only multivariate quantiles coping with both high-dimensional data and functional data, also in the framework of multiple-output quantile regression. This work studies spatial quantiles in the finite-dimensional case, where the spatial quantile Όα,u(P)\mu_{\alpha,u}(P) of the distribution PP taking values in Rd\mathbb{R}^d is a point in Rd\mathbb{R}^d indexed by an order α∈[0,1)\alpha\in[0,1) and a direction uu in the unit sphere Sd−1\mathcal{S}^{d-1} of Rd\mathbb{R}^d --- or equivalently by a vector αu\alpha u in the open unit ball of Rd\mathbb{R}^d. Recently, Girard and Stupfler (2017) proved that (i) the extreme quantiles Όα,u(P)\mu_{\alpha,u}(P) obtained as α→1\alpha\to 1 exit all compact sets of Rd\mathbb{R}^d and that (ii) they do so in a direction converging to uu. These results help understanding the nature of these quantiles: the first result is particularly striking as it holds even if PP has a bounded support, whereas the second one clarifies the delicate dependence of spatial quantiles on uu. However, they were established under assumptions imposing that PP is non-atomic, so that it is unclear whether they hold for empirical probability measures. We improve on this by proving these results under much milder conditions, allowing for the sample case. This prevents using gradient condition arguments, which makes the proofs very challenging. We also weaken the well-known sufficient condition for uniqueness of finite-dimensional spatial quantiles

    Structure-preserving non-linear PCA for matrices

    Full text link
    We propose MNPCA, a novel non-linear generalization of (2D)2^2{PCA}, a classical linear method for the simultaneous dimension reduction of both rows and columns of a set of matrix-valued data. MNPCA is based on optimizing over separate non-linear mappings on the left and right singular spaces of the observations, essentially amounting to the decoupling of the two sides of the matrices. We develop a comprehensive theoretical framework for MNPCA by viewing it as an eigenproblem in reproducing kernel Hilbert spaces. We study the resulting estimators on both population and sample levels, deriving their convergence rates and formulating a coordinate representation to allow the method to be used in practice. Simulations and a real data example demonstrate MNPCA's good performance over its competitors.Comment: 23 pages, 4 figure

    Asymptotic and bootstrap tests for the dimension of the non-Gaussian subspace

    Full text link
    Dimension reduction is often a preliminary step in the analysis of large data sets. The so-called non-Gaussian component analysis searches for a projection onto the non-Gaussian part of the data, and it is then important to know the correct dimension of the non-Gaussian signal subspace. In this paper we develop asymptotic as well as bootstrap tests for the dimension based on the popular fourth order blind identification (FOBI) method
    • 

    corecore