7 research outputs found

    The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases

    Get PDF
    Copyright © 2014 Al-Mahdawi, Anjomani Virmouni and Pook. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.This article has been made available through the Brunel Open Access Publishing Fund.DNA methylation primarily occurs within human cells as a 5-methylcytosine (5mC) modification of the cytosine bases in CpG dinucleotides. 5mC has proven to be an important epigenetic mark that is involved in the control of gene transcription for processes such as development and differentiation. However, recent studies have identified an alternative modification, 5-hydroxymethylcytosine (5hmC), which is formed by oxidation of 5mC by ten-eleven translocation (TET) enzymes. The overall levels of 5hmC in the mammalian genome are approximately 10% of 5mC levels, although higher levels have been detected in tissues of the central nervous system (CNS). The functions of 5hmC are not yet fully known, but evidence suggests that 5hmC may be both an intermediate product during the removal of 5mC by passive or active demethylation processes and also an epigenetic modification in its own right, regulating chromatin or transcriptional factors involved in processes such as neurodevelopment or environmental stress response. This review highlights our current understanding of the role that 5hmC plays in neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich ataxia (FRDA), Huntington's disease (HD), and Parkinson's disease (PD).Sara Anjomani Virmouni was supported by funding to Mark A. Pook from the Friedreich’s Ataxia Research Alliance(FARA)

    The effect of chemotherapeutic agents on telomere length maintenance in breast cancer cell lines

    Get PDF
    Copyright @ 2014 the authors. This article is made available through the Brunel Open Access Publishing Fund. It is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Mammalian telomeric DNA consists of tandem repeats of the sequence TTAGGG associated with a specialized set of proteins, known collectively as Shelterin. These telosomal proteins protect the ends of chromosomes against end-to-end fusion and degradation. Short telomeres in breast cancer cells confer telomere dysfunction and this can be related to Shelterin proteins and their level of expression in breast cancer cell lines. This study investigates whether expression of Shelterin and Shelterin-associated proteins are altered, and influence the protection and maintenance of telomeres, in breast cancer cells. 5-aza-2'-deoxycytidine (5-aza-CdR) and trichostatin A (TSA) were used in an attempt to reactivate the expression of silenced genes. Our studies have shown that Shelterin and Shelterin-associated genes were down-regulated in breast cancer cell lines; this may be due to epigenetic modification of DNA as the promoter region of POT1 was found to be partially methylated. Shelterin genes expression was up-regulated upon treatment of 21NT breast cancer cells with 5-aza-CdR and TSA. The telomere length of treated 21NT cells was measured by q-PCR showed an increase in telomere length at different time points. Our studies have shown that down-regulation of Shelterin genes is partially due to methylation in some epithelial breast cancer cell lines. Removal of epigenetic silencing results in up-regulation of Shelterin and Shelterin-associated genes which can then lead to telomere length elongation and stability

    Telomere elongation in the breast cancer cell line 21NT after treatment with an epigenetic modifying drug

    Get PDF
    Background: Telomere length dysregulation plays a major role in cancer development and aging. Telomeres are maintained by a group of specialized genes known as shelterin and shelterin-associated proteins. In breast cancer lines it has been shown that shelterin proteins are dysregulated thereby affecting the telomere stability and contributing to the neoplastic conversion of the mammary epithelial cells. Interestingly, the regulation of some of the shelterin genes is thought to be controlled epigenetically. Methods and Results: In this study, we set out to measure the effect of increased shelterin gene expression on telomere length in breast cancer cell line 21NT treated with 5-aza-2-deoxycytidine (5-aza-CdR) using known telomere length assays. We measured telomere lengths using: Telomere Restriction Fragment length (TRF), absolute quantitative-PCR and cytogenetic Interphase Quantitative Fluorescent in situ Hybridization (iQ-FISH). We found that non-cytotoxic levels of 5-aza-CdR affect telomere lengths by causing a significant and stable increase in telomere lengths of the breast cancer cell line. The increase in telomere lengths was consistently observed when various telomere length methods were used. Conclusions: Further investigation is required to understand the underlying mechanism involved, and the significance of telomere length elongation in relation to clinical outcome when epigenetic modifying drugs are utilized.We thank Professor Robert Newbold for his support and for providing the opportunity to carry out this work within the Institute of Cancer Genetics and Pharmacogenomics, Brunel University London. HY was supported by a triennial project grant (Strategic Award) from the National Centre for Replacement, Refinement, and Reduction (NC3Rs) of animals in research (NC. K500045.1 and G0800697)

    Effect of diazoxide on Friedreich ataxia models

    Get PDF
    Friedreich ataxia (FRDA) is an inherited recessive disorder caused by a deficiency in the mitochondrial protein frataxin. There is currently no effective treatment for FRDA available, especially for neurological deficits. In this study, we tested diazoxide, a drug commonly used as vasodilator in the treatment of acute hypertension, on cellular and animal models of FRDA. We first showed that diazoxide increases frataxin protein levels in FRDA lymphoblastoid cell lines, via the mammalian target of rapamycin (mTOR) pathway. We then explored the potential therapeutic effect of diazoxide in frataxin-deficient transgenic YG8sR mice and we found that prolonged oral administration of 3 mpk/d diazoxide was found to be safe, but produced variable effects concerning efficacy. YG8sR mice showed improved beam walk coordination abilities and footprint stride patterns, but a generally reduced locomotor activity. Moreover, they showed significantly increased frataxin expression, improved aconitase activity, and decreased protein oxidation in cerebellum and brain mitochondrial tissue extracts. Further studies are needed before this drug should be considered for FRDA clinical trials

    MutLα heterodimers modify the molecular phenotype of Friedreich ataxia

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA), the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR) MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions. Methodology/Principal Findings: To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription. Conclusions/Significance: Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription. © 2014 Ezzatizadeh et al.This article has been made available through the Brunel Open Access Publishing Fund

    Effect of diazoxide on Friedreich ataxia models

    No full text
    Friedreich ataxia (FRDA) is an inherited recessive disorder caused by a deficiency in the mitochondrial protein frataxin. There is currently no effective treatment for FRDA available, especially for neurological deficits. In this study, we tested diazoxide, a drug commonly used as vasodilator in the treatment of acute hypertension, on cellular and animal models of FRDA. We first showed that diazoxide increases frataxin protein levels in FRDA lymphoblastoid cell lines, via the mammalian target of rapamycin (mTOR) pathway. We then explored the potential therapeutic effect of diazoxide in frataxin-deficient transgenic YG8sR mice and we found that prolonged oral administration of 3 mpk/d diazoxide was found to be safe, but produced variable effects concerning efficacy. YG8sR mice showed improved beam walk coordination abilities and footprint stride patterns, but a generally reduced locomotor activity. Moreover, they showed significantly increased frataxin expression, improved aconitase activity, and decreased protein oxidation in cerebellum and brain mitochondrial tissue extracts. Further studies are needed before this drug should be considered for FRDA clinical trials
    corecore