19 research outputs found

    Reproducibility of volumetric intravascular ultrasound radiofrequency-based analysis of coronary plaque composition in vivo

    Get PDF
    Intravascular ultrasound radiofrequency (RF-IVUS) data permit the analysis of coronary plaque composition in vivo and is used as an endpoint of ongoing pharmacological intervention trials. We assessed the reproducibility of volumetric RF-IVUS analyses in mild-to-moderately diseased atherosclerotic human coronary arteries in vivo. A total of 9,212 IVUS analyses on cross-sectional IVUS frames was performed to evaluate the reproducibility of volumetric RF-IVUS measurements in 33 coronary segments with a length of 27 ± 7 mm. For vessel, lumen, and plaque + media volume the relative measurement differences (P = NS for all) were (A = intraobserver comparison, same pullback) −0.40 ± 1.0%; −0.48 ± 1.4%; −0.35 ± 1.6%, (B = intraobserver comparison, repeated pullback) −0.42 ± 1.2%; −0.52 ± 1.8%; −0.43 ± 4.5% (C = interobserver comparison, same pullback) 0.71 ± 1.8%; 0.71 ± 2.2%, and 0.89 ± 5.0%, respectively. For fibrous, fibro-lipidic, calcium, and necrotic-core volumes the relative measurement differences (P = NS for all) were (A) 0.45 ± 2.1%; −1.12 ± 4.9%; −0.84 ± 2.1%; −0.22 ± 1.8%, (B) 1.40 ± 4.1%; 1.26 ± 6.7%; 2.66 ± 7.4%; 0.85 ± 4.4%, and (C) −1.60 ± 4.9%; 3.85 ± 8.2%; 1.66 ± 7.5%, and −1.58 ± 4.7%, respectively. Of note, necrotic-core volume showed on average the lowest measurement variability. Thus, in mild-to-moderate atherosclerotic coronary artery disease the reproducibility of volumetric compositional RF-IVUS measurements from the same pullback is relatively high, but lower than the reproducibility of geometrical IVUS measurements. Measurements from repeated pullbacks and by different observers show acceptable reproducibilities; the volumetric measurement of the necrotic-core shows on average the highest reproducibility of the compositional RF-IVUS measurement

    Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development

    No full text
    Increased lipoprotein-associated phospholipase A2 (Lp-PLA2) activity is associated with increased risk of cardiac events, but it is not known whether Lp-PLA2 is a causative agent. Here we show that selective inhibition of Lp-PLA2 with darapladib reduced development of advanced coronary atherosclerosis in diabetic and hypercholesterolemic swine. Darapladib markedly inhibited plasma and lesion Lp-PLA2 activity and reduced lesion lysophosphatidylcholine content. Analysis of coronary gene expression showed that darapladib exerted a general anti-inflammatory action, substantially reducing the expression of 24 genes associated with macrophage and T lymphocyte functioning. Darapladib treatment resulted in a considerable decrease in plaque area and, notably, a markedly reduced necrotic core area and reduced medial destruction, resulting in fewer lesions with an unstable phenotype. These data show that selective inhibition of Lp-PLA2 inhibits progression to advanced coronary atherosclerotic lesions and confirms a crucial role of vascular inflammation independent from hypercholesterolemia in the development of lesions implicated in the pathogenesis of myocardial infarction and strok
    corecore