21 research outputs found

    Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Components

    Get PDF
    the rapid macrocell, Southern Exposure, cracked beam, and linear polarization resistance tests. The systems include bars that are pretreated with zinc chromate to improve the adhesion between the epoxy and the reinforcing steel; two epoxies with improved adhesion to the reinforcing steel; one inorganic corrosion inhibitor, calcium nitrite; two organic corrosion inhibitors; an epoxy-coated bar with a primer containing microencapsulated calcium nitrite; the three epoxy-coated bars with improved adhesion combined with the corrosion inhibitor calcium nitrite; and multiple coated bars with an initial 50-ÎĽm (2-mil) coating of 98 percent zinc and 2 percent aluminum followed by a conventional epoxy-coating. The systems are compared with conventional uncoated reinforcement and conventional epoxy-coated reinforcement. The results presented in this report represent the findings obtained during the first half of a 5-year study that includes longer-term ASTM G 109 and field tests. In the short-term tests used to date, the epoxy-coatings evaluated provide superior corrosion protection to the reinforcing steel. The results also indicate that the bars will continue to perform well in the longer term, although the tests do not evaluate the effects of long-term reductions in the bond between the epoxy and the reinforcing steel. The corrosion rate on the exposed regions of damaged epoxy-coated reinforcement is somewhat higher than the average corrosion rate on the surface of uncoated reinforcement subjected to similar exposure conditions. The use of concrete with a reduced water-cement ratio improves the corrosion performance of both conventional and epoxy-coated reinforcement in uncracked concrete but has little effect in cracked concrete. Increased adhesion between the epoxy and reinforcing steel provides no significant improvement in the corrosion resistance of epoxy-coated reinforcement. It appears that corrosion inhibitors in concrete and the primer coating containing microencapsulated calcium nitrite improve the corrosion resistance of the epoxy-coated steel in uncracked concrete, but not in cracked concrete. The zinc coating on the multiple coated bars acts as a sacrificial barrier and provides some corrosion protection to the underlying steel in both uncracked and cracked concrete. The degree of protection, however, cannot be evaluated based on the results available to date

    Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance

    Get PDF
    Three commercially available corrosion inhibitors—calcium nitrite, a solution of amines and esters, and an alkenyl-substituted succinic acid salt—are evaluated in conjunction with conventional reinforcement in concrete based on corrosion rate, metal loss, the critical chloride corrosion threshold (CCCT), pore solution analyses, and concrete compressive strength. All three inhibitors increase time to corrosion initiation and decrease corrosion rate, but are less effective in cracked concrete than in uncracked concrete. Of the three inhibitors, the alkenyl-substituted succinic acid salt results in the greatest decrease in corrosion rate, but exhibits the lowest CCCT—below that measured in concrete with no inhibitor. The compressive strengths of concretes containing the amine-ester inhibitor and the alkenyl-substituted succinic acid salt were 15% and 60% lower, espectively, than concrete without an inhibitor. For the latter inhibitor, pore solution analyses indicated elevated sulfate contents at 1 and 7 days, which may explain the low CCCT and strength. Paste containing the amine-ester inhibitor had an elevated sulfate content at 7 days

    Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance

    Get PDF
    Three commercially available corrosion inhibitors—calcium nitrite, a solution of amines and esters, and an alkenyl-substituted succinic acid salt—are evaluated in conjunction with conventional reinforcement in concrete based on corrosion rate, metal loss, the critical chloride corrosion threshold (CCCT), pore solution analyses, and concrete compressive strength. All three inhibitors increase time to corrosion initiation and decrease corrosion rate, but are less effective in cracked concrete than in uncracked concrete. Of the three inhibitors, the alkenyl-substituted succinic acid salt results in the greatest decrease in corrosion rate, but exhibits the lowest CCCT—below that measured in concrete with no inhibitor. The compressive strengths of concretes containing the amine-ester inhibitor and the alkenyl substituted succinic acid salt were 15% and 60% lower, respectively, than concrete without an inhibitor. For the latter inhibitor, pore solution analyses indicated elevated sulfate contents at 1 and 7 days, which may explain the low CCCT and strength. Paste containing the amine-ester inhibitor had an elevated sulfate content at 7 days

    SRF is required for maintenance of astrocytes in non-reactive state in the mammalian brain

    Get PDF
    Astrocytes play several critical roles in the normal functioning of the mammalian brain, including ion homeostasis, synapse formation, and synaptic plasticity. Following injury and infection or in the setting of neurodegeneration, astrocytes become hypertrophic and reactive, a process termed astrogliosis. Although acute reactive gliosis is beneficial in limiting further tissue damage, chronic gliosis becomes detrimental for neuronal recovery and regeneration. Several extracellular factors have been identified that generate reactive astrocytes; however, very little is known about the cell-autonomous transcriptional mechanisms that regulate the maintenance of astrocytes in the normal non-reactive state. Here, we show that conditional deletion of the stimulus-dependent transcription factor, serum response factor (SRF) in astrocytes

    Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening

    Get PDF
    INTRODUCTION: The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that the vascular geometry created by an implanted stent causes local alterations in wall shear stress (WSS) that are associated with neointimal hyperplasia (NH). Foreshortening is a potential limitation of stent design that may affect stent performance and the rate of restenosis. The angle created between axially aligned stent struts and the principal direction of blood flow varies with the degree to which the stent foreshortens after implantation. METHODS: In the current investigation, we tested the hypothesis that stent foreshortening adversely influences the distribution of WSS and WSS gradients using time-dependent 3D CFD simulations of normal arteries based on canine coronary artery measurements of diameter and blood flow. WSS and WSS gradients were calculated using conventional techniques in ideal (16 mm) and progressively foreshortened (14 and 12 mm) stented computational vessels. RESULTS: Stent foreshortening increased the intrastrut area of the luminal surface exposed to low WSS and elevated spatial WSS gradients. Progressive degrees of stent foreshortening were also associated with strut misalignment relative to the direction of blood flow as indicated by analysis of near-wall velocity vectors. CONCLUSION: The current results suggest that foreshortening may predispose the stented vessel to a higher risk of neointimal hyperplasia

    Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling

    Get PDF
    BACKGROUND: The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. METHODS: In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. RESULTS: Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm(2 )along the pericardial luminal surface and 4.26 to 4.88 dynes/cm(2 )along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm(2 )observed throughout the stented region of a straight vessel implanted with an equivalent stent. CONCLUSION: The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis

    Time-to-Corrosion of Reinforcing Steel in Concrete Slabs, Volume VI: Calcium Nitrite Admixture

    No full text
    Eighteen relatively large reinforced concrete slabs were fabricated in 1980 using calcium nitrite admixture with black (uncoated) steel. Their performance is compared with uncoated steel in concrete without admixtures. The slabs were placed in two lifts: the bottom lift consisted of a bottom mat of reinforcing steel in chloride-free concrete, and a top lift consisting of the top mat rebars in concrete contaminated with various quantities of sodium chloride. All the electrical connections between the reinforcing mats were made exterior to the slabs so that the corrosion current flow could be measured. After curing, the slabs were mounted above ground and exposed to the environment of the Washington, D.C., Northern Virginia area. They were periodically subjected to additional chloride exposure while being monitored for the initial 1-year period. Findings of the study indicate that the calcium nitrite can be effective in reducing rate of corrosion for black reinforcing steel embedded in salt-contaminated concrete up to a chloride/nitrite ratio of 0.9
    corecore