44 research outputs found
Identification of major factors influencing ELISpot-based monitoring of cellular responses to antigens from mycobacterium tuberculosis
A number of different interferon-c ELISpot protocols are in use in laboratories studying antigen-specific immune responses. It is therefore unclear how results from different assays compare, and what factors most significantly influence assay outcome. One such difference is that some laboratories use a short in vitro stimulation period of cells before they are
transferred to the ELISpot plate; this is commonly done in the case of frozen cells, in order to enhance assay sensitivity.
Other differences that may be significant include antibody coating of plates, the use of media with or without serum, the serum source and the number of cells added to the wells. The aim of this paper was to identify which components of the different ELISpot protocols influenced assay sensitivity and inter-laboratory variation. Four laboratories provided protocols for quantifying numbers of interferon-c spot forming cells in human peripheral blood mononuclear cells stimulated with Mycobacterium tuberculosis derived antigens. The differences in the protocols were compared directly. We found that several sources of variation in assay protocols can be eliminated, for example by avoiding serum supplementation and using AIM-V serum free medium. In addition, the number of cells added to ELISpot wells should also be standardised. Importantly, delays in peripheral blood mononuclear cell processing before stimulation had a marked effect on the number of detectable spot forming cells; processing delay thus should be minimised as well as standardised. Finally, a pre-stimulation culture period improved the sensitivity of the assay, however this effect may be both antigen and donor dependent. In conclusion, small differences in ELISpot protocols in routine use can affect the results obtained and care should be given to conditions selected for use in a given study. A pre-stimulation step may improve the sensitivity of the assay, particularly when cells have been previously frozen
Both CD4+ and CD8+ Lymphocytes Participate in the IFN-γ Response to Filamentous Hemagglutinin from Bordetella pertussis in Infants, Children, and Adults
Infant CD4+ T-cell responses to bacterial infections or vaccines have been extensively studied, whereas studies on CD8+ T-cell responses focused mainly on viral and intracellular parasite infections. Here we investigated CD8+ T-cell responses upon Bordetella pertussis infection in infants, children, and adults and pertussis vaccination in infants. Filamentous hemagglutinin-specific IFN-γ secretion by circulating lymphocytes was blocked by anti-MHC-I or -MHC-II antibodies, suggesting that CD4+ and CD8+ T lymphocytes are involved in IFN-γ production. Flow cytometry analyses confirmed that both cell types synthesized antigen-specific IFN-γ, although CD4+ lymphocytes were the major source of this cytokine. IFN-γ synthesis by CD8+ cells was CD4+ T cell dependent, as evidenced by selective depletion experiments. Furthermore, IFN-γ synthesis by CD4+ cells was sometimes inhibited by CD8+ lymphocytes, suggesting the presence of CD8+ regulatory T cells. The role of this dual IFN-γ secretion by CD4+ and CD8+ T lymphocytes in pertussis remains to be investigated
Heparin-Binding-Hemagglutinin-Induced IFN-γ Release as a Diagnostic Tool for Latent Tuberculosis
BACKGROUND: The detection of latent tuberculosis infection (LTBI) is a major component of tuberculosis (TB) control strategies. In addition to the tuberculosis skin test (TST), novel blood tests, based on in vitro release of IFN-gamma in response to Mycobacterium tuberculosis-specific antigens ESAT-6 and CFP-10 (IGRAs), are used for TB diagnosis. However, neither IGRAs nor the TST can separate acute TB from LTBI, and there is concern that responses in IGRAs may decline with time after infection. We have therefore evaluated the potential of the novel antigen heparin-binding hemagglutinin (HBHA) for in vitro detection of LTBI. METHODOLOGY AND PRINCIPAL FINDINGS: HBHA was compared to purified protein derivative (PPD) and ESAT-6 in IGRAs on lymphocytes drawn from 205 individuals living in Belgium, a country with low TB prevalence, where BCG vaccination is not routinely used. Among these subjects, 89 had active TB, 65 had LTBI, based on well-standardized TST reactions and 51 were negative controls. HBHA was significantly more sensitive than ESAT-6 and more specific than PPD for the detection of LTBI. PPD-based tests yielded 90.00% sensitivity and 70.00% specificity for the detection of LTBI, whereas the sensitivity and specificity for the ESAT-6-based tests were 40.74% and 90.91%, and those for the HBHA-based tests were 92.06% and 93.88%, respectively. The QuantiFERON-TB Gold In-Tube (QFT-IT) test applied on 20 LTBI subjects yielded 50% sensitivity. The HBHA IGRA was not influenced by prior BCG vaccination, and, in contrast to the QFT-IT test, remote (>2 years) infections were detected as well as recent (<2 years) infections by the HBHA-specific test. CONCLUSIONS: The use of ESAT-6- and CFP-10-based IGRAs may underestimate the incidence of LTBI, whereas the use of HBHA may combine the operational advantages of IGRAs with high sensitivity and specificity for latent infection.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Role of the IL-10/IL-12 balance in the primary cellular immune response of infants to pertussis vaccines
info:eu-repo/semantics/nonPublishe
In vitro expansion of CD4+CD25highFOXP3+CD127low/- regulatory T cells from peripheral blood lymphocytes of healthy Mycobacterium tuberculosis-infected humans.
CD4+CD25highFOXP3+ regulatory T (Treg) cells have recently been found at elevated levels in the peripheral blood of tuberculosis patients, compared to Mycobacterium tuberculosis latently infected (LTBI) healthy individuals and non-infected controls. Here, we show that CD4+CD25highFOXP3+ T lymphocytes can be expanded in vitro from peripheral blood mononuclear cells (PBMC) of LTBI individuals, but not of uninfected controls by incubating them with BCG in the presence of TGF-beta. These expanded cells from the PBMC of LTBI subjects expressed CTLA-4, GITR and OX-40, but were CD127low/- and have therefore the phenotype of Treg cells. In addition, they inhibited in a dose-dependant manner the proliferation of freshly isolated mononuclear cells in response to polyclonal stimulation, indicating that they are functional Treg lymphocytes. In contrast, incubation of the PBMC with BCG alone preferentially induced activated CD4+ T cells, expressing CD25 and/or CD69 and secreting IFN-gamma. These results show that CD4+CD25highFOXP3+ Treg cells can be expanded or induced in the peripheral blood of LTBI individuals in conditions known to predispose to progression towards active tuberculosis and may therefore play an important role in the pathogenesis of the disease.In VitroJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Mature CD8+ T cell response to Bordetella pertussis infection in infants.
info:eu-repo/semantics/nonPublishe
Cellular and humoral immune responses of preterm babies to the first administration of the pertussis vaccines.
info:eu-repo/semantics/nonPublishe
Modulation of the infant immune responses by the first pertussis vaccine administrations.
Many efforts are currently made to prepare combined vaccines against most infectious pathogens, that may be administered early in life to protect infants against infectious diseases as early as possible. However, little is known about the general immune modulation induced by early vaccination. Here, we have analyzed the cytokine secretion profiles of two groups of 6-month-old infants having received as primary immunization either a whole-cell (Pw) or an acellular (Pa) pertussis vaccine in a tetravalent formulation of pertussis-tetanus-diphtheria-poliomyelitis vaccines. Both groups of infants secreted IFN-gamma in response to the Bordetella pertussis antigens filamentous haemagglutinin and pertussis toxin, and this response was correlated with antigen-specific IL-12p70 secretion, indicating that both pertussis vaccines induced Th1 cytokines. However, Pa recipients also developed a strong Th2-type cytokine response to the B. pertussis antigens, as noted previously. In addition, they induced Th2-type cytokines to the co-administrated antigen tetanus toxoïd, as well as to the food antigen beta-lactoglobulin. Furthermore, the general cytokine profile of the Pa recipients was strongly Th2-skewed at 6 months, as indicated by the cytokines induced by the mitogen phytohaemagglutinin. These data demonstrate that the cytokine profile of 6-month-old infants is influenced by the type of formulation of the pertussis vaccine they received at 2, 3 and 4 months of life. Large prospective studies would be warranted to evaluate the possible long-term consequences of this early modulation of the cytokine responses in infants.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Effects of different molecular forms of FHA on IL-10 and IL-12 secretions by human dendritic cells.
info:eu-repo/semantics/nonPublishe
Molecular dissociation of FHA-induced IL-10 and IL-12 secretion by human dendritic cells.
info:eu-repo/semantics/nonPublishe