2 research outputs found

    Genotype-specific interactions and the trade-off between host and parasite fitness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete <it>Hyaloperonospora arabidopsis </it>(= <it>parasitica</it>), a natural pathogen of the Brassicaceae <it>Arabidopsis thaliana</it>.</p> <p>Results</p> <p>We performed a controlled cross inoculation experiment confronting six lines of the host plant with seven strains of the parasite in order to evaluate genetic variation for phenotypic traits of infection among hosts, parasites, and distinct combinations. Parasite infection intensity and transmission were highly variable among parasite strains and host lines but depended also on the interaction between particular genotypes of the protagonists, and genetic variation for the infection phenotype of parasites from natural populations was found even at a small spatial scale within population. Furthermore, increased parasite fitness led to a significant decrease in host fitness only on a single host line (Gb), although a trade-off between these two traits was expected because host and parasite share the same resource pool for their respective reproduction. We propose that different levels of compatibility dependent on genotype by genotype interactions might lead to different amounts of resources available for host and parasite reproduction. This variation in compatibility could thus mask the expected negative relationship between host and parasite fitness, as the total resource pool would not be constant.</p> <p>Conclusion</p> <p>These results highlight the importance of host variation in the determination of parasite fitness traits. This kind of interaction may in turn decouple the relationship between parasite transmission and its negative effect on host fitness, altering theoretical predictions of parasite evolution.</p

    Arabidopsis thaliana and the Robin Hood parasite: a chivalrous oomycete that steals fitness from fecund hosts and benefits the poorest one?

    No full text
    Are parasites always harmful to their hosts? By definition, indeed, but in a few cases and particular environments, hosts experience higher fitness in the presence than in the absence of their parasites. Symbiotic associations form a continuum of interactions, from deleterious to beneficial effects on hosts. In this paper, we investigate the outcome of parasite infection of Arabidopsis thaliana by its natural pathogen Hyaloperonospora arabidopsis. This system exhibits a wide range of parasite impact on host fitness with, surprisingly, deleterious effects on high fecundity hosts and, at the opposite extreme, seemingly beneficial effects on the least fecund one. This phenomenon might result from varying levels of tolerance among host lines and even overcompensation for parasite damage analogous to what can be observed in plant–herbivore systems
    corecore