18 research outputs found

    Inducible Deletion of Protein Kinase Map4k4 in Obese Mice Improves Insulin Sensitivity in Liver and Adipose Tissues

    Get PDF
    Studies in vitro suggest that mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) attenuates insulin signaling, but confirmation in vivo is lacking since Map4k4 knockout is lethal during embryogenesis. We thus generated mice with floxed Map4k4 alleles and a tamoxifen-inducible Cre/ERT2 recombinase under the control of the ubiquitin C promoter to induce whole-body Map4k4 deletion after these animals reached maturity. Tamoxifen administration to these mice induced Map4k4 deletion in all tissues examined, causing decreased fasting blood glucose concentrations and enhanced insulin signaling to AKT in adipose tissue and liver but not in skeletal muscle. Surprisingly, however, mice generated with a conditional Map4k4 deletion in adiponectin-positive adipocytes or in albumin-positive hepatocytes displayed no detectable metabolic phenotypes. Instead, mice with Map4k4 deleted in Myf5-positive tissues, including all skeletal muscles tested, were protected from obesity-induced glucose intolerance and insulin resistance. Remarkably, these mice also showed increased insulin sensitivity in adipose tissue but not skeletal muscle, similar to the metabolic phenotypes observed in inducible whole-body knockout mice. Taken together, these results indicate that (i) Map4k4 controls a pathway in Myf5-positive cells that suppresses whole-body insulin sensitivity and (ii) Map4k4 is a potential therapeutic target for improving glucose tolerance and insulin sensitivity in type 2 diabetes

    Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance

    Get PDF
    OBJECTIVE: Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis. METHOD: White and brown adipocyte-deficient (Hig2fl/fl x Adiponection cre+) and selective brown/beige adipocyte-deficient (Hig2fl/fl x Ucp1 cre+) mice were generated to investigate the role of Hig2 in adipose depots. Additionally, we used multiple housing temperatures to investigate the role of active brown/beige adipocytes in this process. RESULTS: Hig2 localized to LDs in SGBS cells, a human adipocyte cell strain. Mice with adipocyte-specific Hig2 deficiency in all adipose depots demonstrated reduced visceral adipose tissue weight and increased glucose tolerance. This metabolic effect could be attributed to brown/beige adipocyte-specific Hig2 deficiency since Hig2fl/fl x Ucp1 cre+ mice displayed the same phenotype. Furthermore, when adipocyte-deficient Hig2 mice were moved to thermoneutral conditions in which non-shivering thermogenesis is deactivated, these improvements were abrogated and glucose intolerance ensued. Adipocyte-specific Hig2 deficient animals displayed no detectable changes in adipocyte lipolysis or energy expenditure, suggesting that Hig2 may not mediate these metabolic effects by restraining lipolysis in adipocytes. CONCLUSIONS: We conclude that Hig2 localizes to LDs in adipocytes, promoting adipose tissue lipid deposition and that its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 degrees C. Reversal of this phenotype at thermoneutrality in the absence of detectable changes in energy expenditure, adipose mass, or liver triglyceride suggests that Hig2 deficiency triggers a deleterious endocrine or neuroendocrine pathway emanating from brown/beige fat cells

    Map4k4 Signaling Nodes in Metabolic and Cardiovascular Diseases

    No full text
    Mitogen-activated kinase kinase kinase kinase 4 (Map4k4), originally identified in small interfering (si)RNA screens and characterized by tissue-specific gene deletions, is emerging as a regulator of glucose homeostasis and cardiovascular health. Recent studies have shown that Map4k4 gene ablation or inhibition of its kinase activity attenuates hyperglycemia and plaque formation in mouse models of insulin resistance and atherosclerosis, and suggest roles for Map4k4 in multiple signaling systems, including NFkappaB activation, small GTPase regulation, the Hippo cascade, and regulation of cell dynamics by FERM domain proteins. This new and promising area of inquiry raises key questions that need to be addressed, such as defining which of the above or other effectors mediate Map4k4 control of metabolic and vascular functions, and identifying upstream activators of Map4k4

    The rat cytochrome c

    No full text

    Mouse p170 is a novel phosphatidylinositol 3-kinase containing a C2 domain

    No full text
    Phosphatidylinositol (PI) 3-kinases catalyze the formation of 3\u27-phosphoinositides, which appear to promote cellular responses to growth factors and such membrane trafficking events as insulin-stimulated translocation of intracellular glucose transporters. We report here the cloning of a novel PI 3-kinase, p170, from cDNA of insulin-sensitive mouse 3T3-L1 adipocytes. Mouse p170 utilizes PI and to a limited extent PI 4-P as substrates, in contrast to the PI-specific yeast VPS34 homolog PtdIns 3-kinase and the p110 PI 3-kinases, which phosphorylate PI, PI 4-P, and PI 4,5-P2. Mouse p170 is also distinct from PtdIns 3-kinase or the p110 PI 3-kinases in exhibiting a 10-fold lower sensitivity to wortmannin. Unique structural elements of p170 include C-terminal sequences strikingly similar to the phosphoinositide-binding C2 domain of protein kinase C isoforms, synaptotagmins, and other proteins. These features of mouse p170 are shared with a recently cloned Drosophila PI 3-kinase, DmPI3K_68D. Together, these proteins define a new class of PI 3-kinase likely influenced by cellular regulators distinct from those acting upon p110- or VPS34-like PI 3-kinases

    The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides

    No full text
    The Phox homology (PX) domain has recently been reported to bind to phosphoinositides, and some PX domains can localize to endosomes in vivo. Here we show data to support the conclusion that the p40(phox) PX domain binds to phosphatidylinositol 3-phosphate specifically in vitro and localizes to endosomes in intact cells. In addition, its Y59A/L65Q mutant, which has decreased affinity for phosphatidylinositol 3-phosphate in vitro, fails to target EGFP-p40-PX to endosomes. However, unlike published results, we find that the p47(phox) PX domain weakly binds to many phosphoinositides in vitro showing slightly higher affinity for phosphatidylinositol 3,4,5-trisphosphate. Moreover, we show for the first time that upon insulin-like growth factor-1 stimulation of COS cells, the p47(phox) PX domain is localized to the plasma membrane, and this subcellular localization is dependent on PI 3-kinase activity. Unexpectedly, its R42Q mutant that loses in vitro phosphoinositide-binding ability can still target EGFP-p47-PX to the plasma membrane. Our data suggest that the translocation of p47(phox) PX domain to the plasma membrane does involve 3\u27-phosphoinositide(s) in the process, but the phosphoinositide-binding of p47(phox) PX domain is not sufficient to recruit it to the plasma membrane. Therefore, the p40(phox) and p47(phox) PX domains can target subcellular membranes via direct or indirect recruitment by phosphoinositides, while both are under the control of phosphatidylinositol 3-kinase activity

    Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains

    No full text
    Signal transmission by many cell surface receptors results in the activation of phosphoinositide (PI) 3-kinases that phosphorylate the 3\u27 position of polyphosphoinositides. From a screen for mouse proteins that bind phosphoinositides, the protein GRP1was identified. GRP1 binds phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4, 5)P3] through a pleckstrin homology (PH) domain and displays a region of high sequence similarity to the yeast Sec7 protein. The PH domain of the closely related protein cytohesin-1, which, through its Sec7 homology domain, regulates integrin beta2 and catalyzes guanine nucleotide exchange of the small guanine nucleotide-binding protein ARF1, was also found to specifically bind PtdIns(3,4,5)P3. GRP1 and cytohesin-1 appear to connect receptor-activated PI 3-kinase signaling pathways with proteins that mediate biological responses such as cell adhesion and membrane trafficking

    Essential role of Ca 2 � /Calmodulin in Early Endosome Antigen-1 Localization □V

    No full text
    Ca 2 � is an essential requirement in membrane fusion, acting through binding proteins such as calmodulin (CaM). Ca 2 � /CaM is required for early endosome fusion in vitro, however, the molecular basis for this requirement is unknown. An additional requirement for endosome fusion is the protein Early Endosome Antigen 1 (EEA1), and its recruitment to the endosome depends on phosphatidylinositol 3-phosphate [PI(3)P] and the Rab5 GTPase. Herein, we demonstrate that inhibition of Ca 2 � /CaM, by using either chemical inhibitors or specific antibodies directed to CaM, results in a profound inhibition of EEA1 binding to endosomal membranes both in live cells and in vitro. The concentration of Ca 2 � /CaM inhibitors required for a full dissociation of EEA1 from endosomal membranes had no effect on the activity of phosphatidylinositol 3-kinases or on endogenous levels of PI(3)P. However, the interaction of EEA1 with liposomes containing PI(3)P was decreased by Ca 2 � /CaM inhibitors. Thus, Ca 2 � /CaM seems to be required for the stable interaction of EEA1 with endosomal PI(3)P, perhaps by directly or indirectly stabilizing the quaternary organization of the C-terminal FYVE domain of EEA1. This requirement is likely to underlie at least in part the essential role of Ca 2 � /CaM in endosome fusion

    RNAi-based gene silencing in primary mouse and human adipose tissues

    No full text
    Cultured adipocyte cell lines are a model system widely used to study adipose function, but they exhibit significant physiological differences compared with primary cells from adipose tissue. Here we report short interfering RNA-based methodology to selectively attenuate gene expression in mouse and human primary adipose tissues as a means of rapidly validating findings made in cultured adipocyte cell lines. The method is exemplified by depletion of the PTEN phosphatase in white adipose tissue (WAT) from mouse and humans, which increases Akt phosphorylation as expected. This technology is also shown to silence genes in mouse brown adipose tissue. Previous work revealed upregulation of the mitochondrial protein UCP1 in adipose cells from mice lacking the gene for the transcriptional corepressor RIP140, whereas in cultured adipocytes, loss of RIP140 has a little effect on UCP1 expression. Application of our method to deplete RIP140 in primary mouse WAT elicited markedly increased oxygen consumption and expression of UCP1 that exactly mimics the phenotype observed in RIP140-null mice. This ex-vivo method of gene silencing should be useful in rapid validation studies as well as in addressing the depot- and species-specific functions of genes in adipose biology

    An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARgamma, adipogenesis, and insulin-responsive hexose transport

    No full text
    The insulin-regulated glucose transporter GLUT4 is a key modulator of whole body glucose homeostasis, and its selective loss in adipose tissue or skeletal muscle causes insulin resistance and diabetes. Here we report an RNA interference-based screen of protein kinases expressed in adipocytes and identify four negative regulators of insulin-responsive glucose transport: the protein kinases PCTAIRE-1 (PCTK1), PFTAIRE-1 (PFTK1), IkappaB kinase alpha, and MAP4K4/NIK. Integrin-linked protein kinase was identified as a positive regulator of this process. We characterized one of these hits, MAP4K4/NIK, and found that it is unique among mitogen-activated protein (MAP) kinases expressed in cultured adipocytes in attenuating hexose transport. Remarkably, MAP4K4/NIK suppresses expression of the adipogenic transcription factors C/EBPalpha, C/EBPbeta, and PPARgamma and of GLUT4 itself in these cells. RNA interference-mediated depletion of MAP4K4/NIK early in differentiation enhances adipogenesis and triglyceride deposition, and even in fully differentiated adipocytes its loss up-regulates GLUT4. Conversely, conditions that inhibit adipogenesis such as TNF-alpha treatment or depletion of PPARgamma markedly up-regulate MAP4K4/NIK expression in cultured adipocytes. Furthermore, TNF-alpha signaling to down-regulate GLUT4 is impaired in the absence of MAP4K4/NIK, indicating that MAP4K4 expression is required for optimal TNF-alpha action. These results reveal a MAP4K4/NIK-dependent signaling pathway that potently inhibits PPARgamma-responsive gene expression, adipogenesis, and insulin-stimulated glucose transport
    corecore