42 research outputs found

    Silsesquioxane polymer as a potential scaffold for laryngeal reconstruction

    Get PDF
    Cancer, disease and trauma to the larynx and their treatment can lead to permanent loss of structures critical to voice, breathing and swallowing. Engineered partial or total laryngeal replacements would need to match the ambitious specifications of replicating functionality, outer biocompatibility, and permissiveness for an inner mucosal lining. Here we present porous polyhedral oligomeric silsesquioxane-poly(carbonate urea) urethane (POSS-PCUU) as a potential scaffold for engineering laryngeal tissue. Specifically, we employ a precipitation and porogen leaching technique for manufacturing the polymer. The polymer is chemically consistent across all sample types and produces a foam-like scaffold with two distinct topographies and an internal structure composed of nano- and micro-pores. Whilst the highly porous internal structure of the scaffold contributes to the complex tensile behaviour of the polymer, the surface of the scaffold remains largely non-porous. The low number of pores minimise access for cells, although primary fibroblasts and epithelial cells do attach and proliferate on the polymer surface. Our data show that with a change in manufacturing protocol to produce porous polymer surfaces, POSS-PCUU may be a potential candidate for overcoming some of the limitations associated with laryngeal reconstruction and regeneration

    Proteomic profiling reveals sub proteomes of the human placenta

    Get PDF
    Proteomic characterisation of the placenta has largely been focused on effect of disease, anatomical features or specific cell types. We describe an unbiased proteomic mapping analysis to investigate how the placental proteome changes throughout the organ. A transverse slice of a human placenta was sectioned into 1 × 1cm samples. Sections were analysed using label free proteomics. Analysis revealed two distinct sub-proteomes that did not have anatomical significance. One had a muscular proteome and the other had distinct immunomodulation functions. Chorionic plate enriched proteins highlighted the fetal tissues high energy requirements whilst mechanisms of the decidua observed included modulation of cortisone levels

    The presence of Y674/Y675 phosphorylated NTRK1 via TP53 repression of PTPN6 expression as a potential prognostic marker in neuroblastoma

    Get PDF
    The tumor suppressor TP53 promotes nerve growth factor receptor (NTRK1) -Y674/Y675 phosphorylation (NTRK1-pY674/pY675) via repression of the NTRK1 phosphatase PTPN6 in a ligand-independent manner, resulting in suppression of breast cancer cell proliferation. Moreover, NTRK1-pY674/pY675 together with low levels of PTPN6 and TP53 expression is associated with favorable disease-free survival of breast cancer patients. We determined whether in neuroblastoma this protein expression pattern impacts relapse-free survival (RFS). NTRK1-pY674/pY675, PTPN6, and TP53 expression was assessed in 98 neuroblastoma samples by immunohistochemistry. Association between expression levels and RFS was investigated by multivariate and Kaplan-Meier analysis. Mutant or wild-type TP53 was identified by sequencing tumor DNA. Tumors expressing NTRK1-pY674/pY675 and low or undetectable levels of PTPN6 and TP53 were significantly associated with 5-year RFS (P = .014) when the dataset was stratified by MYCN amplification, segmental chromosomal abnormalities and histology. Similar results were observed with tumors expressing wild-type TP53, NTRK1-pY674/pY675 and low or undetectable levels of PTPN6. Kaplan-Meier analysis demonstrated a significant correlation (P = .004), with a 50% probability of RFS (median survival 4.73 years) when present compared with 19.51% (median survival 11.63 months) when absent. Similar results were seen with non-amplified MYCN or unfavorable/undifferentiating samples and tumors from patients aged 18 months or less. Importantly, NTRK1-pY674/pY675 is an independent predictor of improved RFS. These results strongly suggest that NTRK1-pY674/pY675 together with wild-type TP53 and undetectable or low levels of PTPN6 expression is a potential biomarker of improved RFS of neuroblastoma patients. The predictive value of NTRK1-pY674/pY675 together with wild-type TP53 and low PTPN6 expression could contribute to neuroblastoma patient prognosis

    Molecular diagnoses of century-old childhood tumours

    Get PDF

    Imaging Invasion: Micro-CT imaging of adamantinomatous craniopharyngioma highlights cell type specific spatial relationships of tissue invasion.

    Get PDF
    Tissue invasion and infiltration by brain tumours poses a clinical challenge, with destruction of structures leading to morbidity. We assessed whether micro-CT could be used to map tumour invasion in adamantinomatous craniopharyngioma (ACP), and whether it could delineate ACPs and their intrinsic components from surrounding tissue.Three anonymised archival frozen ACP samples were fixed, iodinated and imaged using a micro-CT scanner prior to the use of standard histological processing and immunohistochemical techniques.We demonstrate that micro-CT imaging can non-destructively give detailed 3D structural information of tumours in volumes with isotropic voxel sizes of 4-6 microns, which can be correlated with traditional histology and immunohistochemistry.Such information complements classical histology by facilitating virtual slicing of the tissue in any plane and providing unique detail of the three dimensional relationships of tissue compartments

    Silsesquioxane polymer as a potential scaffold for laryngeal reconstruction

    Get PDF
    Cancer, disease and trauma to the larynx and their treatment can lead to permanent loss of structures critical to voice, breathing and swallowing. Engineered partial or total laryngeal replacements would need to match the ambitious specifications of replicating functionality, outer biocompatibility, and permissiveness for an inner mucosal lining. Here we present porous polyhedral oligomeric silsesquioxane-poly(carbonate urea) urethane (POSS-PCUU) as a potential scaffold for engineering laryngeal tissue. Specifically, we employ a precipitation and porogen leaching technique for manufacturing the polymer. The polymer is chemically consistent across all sample types and produces a foam-like scaffold with two distinct topographies and an internal structure composed of nano- and micro-pores. While the highly porous internal structure of the scaffold contributes to the complex tensile behaviour of the polymer, the surface of the scaffold remains largely non-porous. The low number of pores minimise access for cells, although primary fibroblasts and epithelial cells do attach and proliferate on the polymer surface. Our data show that with a change in manufacturing protocol to produce porous polymer surfaces, POSS-PCUU may be a potential candidate for overcoming some of the limitations associated with laryngeal reconstruction and regeneration

    Micro-CT and histological investigation of the spatial pattern of feto-placental vascular density

    Get PDF
    Introduction: There are considerable variations in villous morphology within a normal placenta. However, whether there is a reproducible spatial pattern of variation in villous vascular density is not known. Micro-CT provides three-dimensional volume imaging with spatial resolution down to the micrometer scale. In this study, we applied Micro-CT and histological analysis to investigate the degree of heterogeneity of vascularisation within the placenta. Method: Ten term placentas were collected at elective caesarean section, perfused with contrast agent and imaged whole with Micro-CT. Eight full depth tissue blocks were then taken from each placenta and imaged. Sections were taken for histological analysis. Data was analysed to investigate vascular fill, and vascular density in relation to location from cord insertion to placental edge at each scale. Results: Whole placental imaging revealed no spatially consistent difference in villous vessel density within the main placental tissue, although there was a great degree of heterogeneity. Both block imaging and histological analysis found a large degree of heterogeneity of vascular density within placentas, but no strong correlation between villous vascular density and block location (rs = 0.066, p = 0.7 block imaging, rs = 0.06, p = 0.6 histological analysis). Discussion: This work presents a novel method for imaging the human placenta vascular tree using multiscale Micro-CT imaging. It demonstrates that there is a large degree of variation in vascular density throughout normal term human placentas. The three-dimensional data created by this technique could be used, with more advanced computer analysis, to further investigate the structure of the vascular tree

    Life Study Standard Operating Procedures: Biosamples

    Get PDF

    Preclinical transgenic and patient-derived xenograft models recapitulate the radiological features of human adamantinomatous craniopharyngioma

    Get PDF
    To assess the clinical relevance of transgenic and patient-derived xenograft models of adamantinomatous craniopharyngioma (ACP) using serial magnetic resonance imaging (MRI) and high resolution post-mortem microcomputed tomography (μ-CT), with correlation with histology and human ACP imaging. The growth patterns and radiological features of tumors arising in Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) transgenic mice, and of patient-derived ACP xenografts implanted in the cerebral cortex, were monitored longitudinally in vivo with anatomical and functional MRI, and by ex vivo μ-CT at study end. Pathological correlates with hematoxylin and eosin stained sections were investigated. Early enlargement and heterogeneity of Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) mouse pituitaries was evident at initial imaging at 8 weeks, which was followed by enlargement of a solid tumor, and development of cysts and hemorrhage. Tumors demonstrated MRI features that recapitulated those of human ACP, specifically, T1 -weighted signal enhancement in the solid tumor component following Gd-DTPA administration, and in some animals, hyperintense cysts on FLAIR and T1 -weighted images. Ex vivo μ-CT correlated with MRI findings and identified smaller cysts, which were confirmed by histology. Characteristic histological features, including wet keratin and calcification, were visible on μ-CT and verified by histological sections of patient-derived ACP xenografts. The Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) transgenic mouse model and cerebral patient-derived ACP xenografts recapitulate a number of the key radiological features of the human disease and provide promising foundations for in vivo trials of novel therapeutics for the treatment of these tumors

    Comprehensive molecular characterisation of epilepsy-associated glioneuronal tumours

    Get PDF
    Glioneuronal tumours are an important cause of treatment-resistant epilepsy. Subtypes of tumour are often poorly discriminated by histological features and may be difficult to diagnose due to a lack of robust diagnostic tools. This is illustrated by marked variability in the reported frequencies across different epilepsy surgical series. To address this, we used DNA methylation arrays and RNA sequencing to assay the methylation and expression profiles within a large cohort of glioneuronal tumours. By adopting a class discovery approach, we were able to identify two distinct groups of glioneuronal tumour, which only partially corresponded to the existing histological classification. Furthermore, by additional molecular analyses, we were able to identify pathogenic mutations in BRAF and FGFR1, specific to each group, in a high proportion of cases. Finally, by interrogating our expression data, we were able to show that each molecular group possessed expression phenotypes suggesting different cellular differentiation: astrocytic in one group and oligodendroglial in the second. Informed by this, we were able to identify CCND1, CSPG4, and PDGFRA as immunohistochemical targets which could distinguish between molecular groups. Our data suggest that the current histological classification of glioneuronal tumours does not adequately represent their underlying biology. Instead, we show that there are two molecular groups within glioneuronal tumours. The first of these displays astrocytic differentiation and is driven by BRAF mutations, while the second displays oligodendroglial differentiation and is driven by FGFR1 mutations
    corecore