1 research outputs found

    An Overview of the Curcumin-Based and Allicin Bioactive Compounds as potential treatment to SARS-CoV-2 with structural bioinformatics tools

    No full text
    The recent outbreak of SARS-CoV-2 across the globe and the absence of a specific cure against the disease lead the scientific community to investigate some alternative indigenous treatments. SARS-CoV-2 is the virus responsible for the coronavirus ailment 2019 (COVID-19). This virus has 4 auxiliary proteins namely the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins. The main proteases and RNA dependent RNA polymerase are also essential structures by which the virus replicates and survives. Each of these proteins are structures of the virus that are potential targets for drugs which are leads in the drug discovery process of any drug for the virus. Currently available treatments are not specific to the disease and therefore carry unwanted adverse effects that can be highly dangerous and sometimes fatal. Many of these treatments are supplementary in nature or based on repurposed drugs from other viral outbreaks. Alternatives of conventional drugs are required to control the spread and severity of the disease. Allicin, curcumin and their derivatives have been researched for their antiviral property and shown to have good binding affinity towards SARS-CoV-2 structures essential in their survival, especially the main proteases and RNA dependent RNA polymerases. The structural bioinformatics tools have elicited methods to predict the bioactivity of the natural product-based compounds. Apart from the beneficial medication that they offer, natural products carry along other advantages for the current pandemic situation in terms of supply, logistics, and affordability
    corecore