335 research outputs found

    Some Good Reasons to Use Matched Filters for the Detection of Point Sources in CMB Maps

    Full text link
    In this draft we comment on the results concerning the performances of matched filters, scale adaptive filters and Mexican hat wavelet that recently appeared in literature in the context of point source detection in Cosmic Microwave Background maps. In particular, we show that, contrary to what has been claimed, the use of the matched filters still appear to be the most reliable and efficient method to disantangle point sources from the backgrounds, even when using detection criterion that, differently from the classic nσn\sigma thresholding rule, takes into account not only the height of the peaks in the signal corresponding to the candidate sources but also their curvature.Comment: Replacement after submission to A&A and referee's comments. Astronomy and Astrophysics, in press, JNL/2003/473

    Detection of new point-sources in WMAP Cosmic Microwave Background (CMB) maps at high Galactic latitude. A new technique to extract point sources from CMB maps

    Full text link
    In experimental microwave maps, point-sources can strongly affect the estimation of the power-spectrum and/or the test of Gaussianity of the Cosmic Microwave Background (CMB) component. As a consequence, their removal from the sky maps represents a critical step in the analysis of the CMB data. Before removing a source, however, it is necessary to detect it and source extraction consists of a delicate preliminary operation. In the literature, various techniques have been presented to detect point-sources in the sky maps. The most sophisticated ones exploit the multi-frequency nature of the observations that is typical of the CMB experiments. These techniques have "optimal" theoretical properties and, at least in principle, are capable of remarkable performances. Actually, they are rather difficult to use and this deteriorates the quality of the obtainable results. In this paper, we present a new technique, the "weighted matched filter" (WMF), that is quite simple to use and hence more robust in practical applications. Such technique shows particular efficiency in the detection of sources whose spectra have a slope different from zero. We apply this method to three Southern Hemisphere sky regions - each with an area of 400 square degrees - of the seven years Wilkinson Microwave Anisotropy Probe (WMAP) maps and compare the resulting sources with those of the two seven-year WMAP point-sources catalogues. In these selected regions we find seven additional sources not previously listed in WMAP catalogues and discuss their most likely identification and spectral properties.Comment: Astronomy and Astrophysics, 2011, in pres

    Unevenly-sampled signals: a general formalism of the Lomb-Scargle periodogram

    Full text link
    The periodogram is a popular tool that tests whether a signal consists only of noise or if it also includes other components. The main issue of this method is to define a critical detection threshold that allows identification of a component other than noise, when a peak in the periodogram exceeds it. In the case of signals sampled on a regular time grid, determination of such a threshold is relatively simple. When the sampling is uneven, however, things are more complicated. The most popular solution in this case is to use the "Lomb-Scargle" periodogram, but this method can be used only when the noise is the realization of a zero-mean, white (i.e. flat-spectrum) random process. In this paper, we present a general formalism based on matrix algebra, which permits analysis of the statistical properties of a periodogram independently of the characteristics of noise (e.g. colored and/or non-stationary), as well as the characteristics of sampling.Comment: 10 pages, 11 figures, Astronomy and Astrophysics, in pres

    An approach for the detection of point-sources in very high resolution microwave maps

    Full text link
    This paper deals with the detection problem of extragalactic point-sources in multi-frequency, microwave sky maps that will be obtainable in future cosmic microwave background radiation (CMB) experiments with instruments capable of very high spatial resolution. With spatial resolutions that can be of order of 0.1-1.0 arcsec or better, the extragalactic point-sources will appear isolated. The same holds also for the compact structures due to the Sunyaev-Zeldovich (SZ) effect (both thermal and kinetic). This situation is different from the maps obtainable with instruments as WMAP or PLANCK where, because of the smaller spatial resolution (approximately 5-30 arcmin), the point-sources and the compact structures due to the SZ effect form a uniform noisy background (the "confusion noise"). Hence, the point-source detection techniques developed in the past are based on the assumption that all the emissions that contribute to the microwave background can be modeled with homogeneous and isotropic (often Gaussian) random fields and make use of the corresponding spatial power-spectra. In the case of very high resolution observations such an assumption cannot be adopted since it still holds only for the CMB. Here, we propose an approach based on the assumption that the diffuse emissions that contribute to the microwave background can be locally approximated by two-dimensional low order polynomials. In particular, two sets of numerical techniques are presented containing two different algorithms each. The performance of the algorithms is tested with numerical experiments that mimic the physical scenario expected for high Galactic latitude observations with the Atacama Large Millimeter/Submillimeter Array (ALMA).Comment: Accepted for publication on "Astronomy & Astrophysics". arXiv admin note: substantial text overlap with arXiv:1206.4536 Replaced version is the accepted one and published in A&
    corecore